一种高速充气翼设计与流固耦合研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High-speed Inflatable Wing Design and Fluid-structure Interaction Analysis
  • 作者:霍文霞 ; 闵昌万 ; 焦子涵 ; 陈林
  • 英文作者:Huo Wen-xia;Min Chang-wan;Jiao Zi-han;Chen Lin;China Academy of Launch Vehicle Technology, Science and Technology on Space Physics Laboratory;
  • 关键词:高速飞行器 ; 充气翼 ; 流固耦合
  • 英文关键词:high-speed vehicle;;inflatable wing;;fluid-structure interaction
  • 中文刊名:DDYH
  • 英文刊名:Missiles and Space Vehicles
  • 机构:中国运载火箭技术研究院空间物理重点实验室;
  • 出版日期:2019-02-10
  • 出版单位:导弹与航天运载技术
  • 年:2019
  • 期:No.366
  • 语种:中文;
  • 页:DDYH201901002
  • 页数:5
  • CN:01
  • ISSN:11-3263/V
  • 分类号:10-14
摘要
针对高速飞行器固定外形无法满足不同飞行段对气动外形不同需求的问题,提出高速充气翼变形方案,探讨了高速充气翼材料选择和内部结构方案,建立双向流固耦合分析模型,得到典型飞行状态下高速充气翼流固耦合特性。结果表明:高速充气翼存在两种不同变形机理,且典型状态下两种变形均不超过2mm;变形后的高速充气翼与常规翼相比,升力系数最大下降3.75%,升阻比最大下降10.18%。
        On the basis of the conception of alterable high-speed aerodynamic configuration, the idea of high-speed inflatable wing is put forward. How to choose the high-speed inflatable wing's material is introduced in detail, and the structure conceptual design of high-speed inflatable wing is discussed in the paper. To analyze the feasibility of high-speed inflatable wing, bidirectional fluid-structure interaction process is set up. On typical case high-speed inflatable wing's deformation and aerodynamic performance is calculated. The results show that high-speed inflatable wing transforms in two different ways both within 2 mm, and the out of shape wing's lift coefficient and lift-to-drag ratio decline 3.75% and 10.18% respectively compared with common wing.
引文
[1]Cory S,Jamey D J.Flight testing of a hybrid rocket/inflatable wing UAV[C].Grapevine:51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition,2013.
    [2]Veldman S L,et al.Load deflection behaviour of inflated beams made of various foil materials[C].California:45th AIAA/ASME/ASCE/AHS/ASCStructures,Structural Dynammics&Materials Conference,2004.
    [3]Yaniv C G,Daniella E R.Analytical failure criteria of an inflated wing[C].Florida:51st AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynammics&Materials Conference,2010.
    [4]吕强,叶正寅,李栋.充气结构机翼的设计和试验研究[J].飞行力学,2007,27(4):77-85.Lv Qiang,Ye Zhengyin,Li Dong.Design and capability analtsis of an aircraft with inflatable wing[J].Flight Dynamics,2007,27(4):77-85.
    [5]朱亮亮,叶正寅.充气式机翼的通用设计方法[J].空军工程大学学报,2009,10(5):16-21.Zhu Liangliang,Ye Zhengyin.Research on an universal design method for inflatable wings[J].Journal of Air Force Engineering University(Natural Science Edition),2009,10(5):16-21.
    [6]杨永强,马云鹏,武哲.基于流固耦合的充气翼内压对翼面变形影响分析[J].北京航空航天大学学报,2014,40(2):188-192.Yang Yongqiang,Ma Yunpeng,Wu Zhe.Analysis of effect of interior pressure to deformation of inflatable wing with fluid-structure interaction analysis method[J].Journal of Beijing University of Aeronautics and Astronautics,2014,40(2):188-192.
    [7]高艺航,贺卫亮.充气式返回舱气动热特性研究[J].航天返回与遥感,2014,35(4):17-25.Gao Yihang,He Weiliang.Research on aerodynamic heating characteristics of Inflatable reentry decelerator[J].Spacecraft Recovery&Remote Sensing,2014,35(4):17-25.
    [8]夏刚,程文科,秦子增.充气式再入飞行器柔性热防护系统的发展概况[J].宇航材料工艺,2003,33(6):1-6.Xia Gang,Cheng Wenke,Qin Zizeng.Development of flexible thermal protection for system inflatable re-entry vehicles[J].Aerospace Materials&Technology,2003,33(6):1-6.
    [9]王永超,董强.充气式机翼设计分析[J].航空科学技术,2014,25(02):28-33.Wang Yongchao,Dong Qiang.Designing and analysis of inflatable wings[J].Aeronautical Science&Technology,2014,25(02):28-33.
    [10]James E M,et al.Ground and flight evaluation of a small-scale inflatable-winged aircraft[C].Reno:40th AIAA Aerospace Sciences Meeting&Exhibit,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700