空间再入充气结构的流固及热固单向耦合研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:One way fluid-structure and thermo-structure interaction on an inflatable space re-entry aeroshell
  • 作者:张章 ; 吴杰 ; 侯安平 ; 王立武 ; 竺梅芳
  • 英文作者:ZHANG Zhang;WU Jie;HOU Anping;WANG Liwu;ZHU Meifang;Key Laboratory for Nondestructive Spacecraft Landing Technology of CAST,Beijing Institute of Space Mechanics & Electricity;National Key Laboratory of Science and Technology on Aero-Engines Aero-Thermodynamics,School of Energy and Power Engineering,Beihang University;
  • 关键词:再入充气结构 ; 内充压气体 ; 弹道分析 ; 流固单向耦合 ; 热固单向耦合
  • 英文关键词:inflatable re-entry aeroshell;;pressurized inflation gas;;trajectory equation;;one way fluid-structure interaction;;one way thermo-structure interaction
  • 中文刊名:KQDX
  • 英文刊名:Acta Aerodynamica Sinica
  • 机构:北京空间机电研究所中国空间技术研究院航天器无损着陆技术核心专业实验室;北京航空航天大学能源与动力工程学院航空发动机气动热力国家级重点实验室;
  • 出版日期:2018-12-15
  • 出版单位:空气动力学学报
  • 年:2018
  • 期:v.36;No.173
  • 基金:国家自然科学基金(11602018)
  • 语种:中文;
  • 页:KQDX201806020
  • 页数:10
  • CN:06
  • ISSN:51-1192/TK
  • 分类号:167-176
摘要
为描述空间再入充气结构的非线性结构动力学行为,基于二维坐标系计算了再入返回过程中的弹道方程,利用CFD数值模拟研究了不同再入高度处的流场及表面热流分布。同时基于有限元理论建立了空间再入充气结构的有限元模型,研究了充气压力、薄膜厚度等材料非线性因素对静力学特性和模态特征的影响,并利用流固及热固单向耦合的方法,分析了考虑高超声速流场气动压力和气动热作用下空间再入充气结构的特性变化。研究表明:驻点最大热流密度随半锥角的增大而减小,随初始再入角的增大而增大;当飞行高度大于40km时需着重考虑气动加热效应对结构热应力及热模态的影响,而飞行高度小于40km时气动压力对结构静应力及模态特征影响更大。
        As an emerging space technology,inflatable return technology has become a hot spot of space power research because of its large payload ratio,small launch volume,and flexible return.However,the theoretical research on reentrant structures at home and abroad is not mature enough,and the analysis of structural characteristics is not comprehensive.For the description of the nonlinear structural dynamic behavior of a burgeoning inflatable re-entry vehicle(IRVE),the modeling of two-dimensional coordinate system for the IRVE system was presented to calculate the trajectory equation during the reentry process.Half taper angle and initial re-entry angle were optimized by genetic algorithm,and the trajectory was exerted as the boundary condition of CFD simulation to obtain the heat flux distribution.A structural dynamic model of IRVE system was established based on the finite element theory,and the effects of different inflation pressures and film thickness on the static and modal characteristics were investigated.Based on the unidirectional couplings of fluid-solid and thermal-solid,the effects of aerodynamic and aeroheating on static and modal characteristics of IRVE system were studied.The results show that the maximum heat flux decreases with the increase of the half taper angle while rises with the increase of the initial reentry angle.When half taper angle is chosen 57.65°and initial reentry angle is chosen 1.35°,the overload can reach a minimum value of-1.96 g.The static characteristic is most affected by aerodynamic pressure when flight height is below 40 km while most affected by aeroheating when flight height is above 40 km.
引文
[1]Wei J Z,Tan H F,Wang W Z,et al.New trends in inflatable re-entry aeroshell[J].Journal of Astronautics,2013,34(7):881-890.(in Chinese)卫剑征,谭惠丰,王伟志,等.充气式再入减速器研究最新进展[J].宇航学报,2013,34(7):881-890.
    [2]He W L,Cai J J,Wang L F,et al.Inflatable reentry technologies research for single launching and multireentry(SLMR)space transporting system[J].Manned Spaceflight,2011,16(4):37-42.(in Chinese)贺卫亮,才晶晶,汪龙芳,等.一次发射多次返回的充气式再入飞行器技术[J].载人航天,2011,16(4):37-42.
    [3]Xia G,Dong Y B,Qin Z Z.Conceptual research on the spacelab inflatable download system[J].Spacecraft Recovery&Remote Sensing,2005,26(1):5-9.(in Chinese)夏刚,董扬彪,秦子增.空间站充气式下载系统的概念研究[J].航天返回与遥感,2005,26(1):5-9.
    [4]Zhang Z,Huang W,Tang M Z,et al.A review of aerothermoelastic numerical research on space reentry vehicles[J].Spacecraft Recovery&Remote Sensing,2016,37(1):10-21.(in Chinese)张章,黄伟,唐明章,等.空间再入飞行器热气动弹性数值研究进展[J].航天返回与遥感,2016,37(1):10-21.
    [5]Moss J N,Glass C E,Hollis B R,et al.Low-density aerodynamics for the inflatable reentry vehicle experiment[J].Journal of Spacecraft&Rockets,2015,43(6):1191-1201.
    [6]Tang X.Theoretical solution of finite element analysis of thin film structure[C]//Chinese Aerostat Conference,2007.(in Chinese)唐逊.薄膜结构有限元分析的理论求解[C]//中国浮空器大会.2007.
    [7]Hughes S,Dillman R,Starr B,et al.Inflatable re-entry vehicle experiment(IRVE)design overview[C]//AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar,Munich.2005.
    [8]Calomino A M.Hypersonic inflatable aerodynamic decelerator(HIAD)technology development overview[C]//AIAAAerodynamic Decelerator Systems Technology Conference and Seminar.2013.
    [9]Liw J,Wu J,Ye Z Y.Heat flow analysis for reentry system[J].Computer Aided Engineering,2013:46-50.(in Chinese)李伟杰,武洁,叶正寅.再入系统的热流分析[C]//2013计算机辅助工程及其理论研讨会.2013:46-50.
    [10]Marraffa L,MazouéF,Reynier P,et al.Some aerothermodynamic aspects of ESA entry probes[J].Chinese Journal of Aeronautics,2006,19(2):126-133.
    [11]Huang M X,Wang W Z.A study on heat flux and structure of inflatable reentry thermal protection system[J].Spacecraft Engineering,2016,25(1):52-59.(in Chinese)黄明星,王伟志.充气式再入柔性热防护系统热流及结构研究[J].航天器工程,2016,25(1):52-59.
    [12]Xia G,Chen W K,Qin Z Z.Development of flexible thermal protection for system inflatable re-entry vehicles[J].Aerospace Materials&Technology,2003,33(6):1-6.(in Chinese)夏刚,程文科,秦子增.充气式再入飞行器柔性热防护系统的发展状况[J].宇航材料工艺,2003,33(6):1-6.
    [13]Lindell M,Hughes S,Dixon M,et al.Structural analysis and testing of the inflatable re-entry vehicle experiment(IRVE)[R].AIAA 2006-1699.
    [14]Kinney D J.Prediction of fluid-surface interactions and aerothermal environments using CBAERO[C]//49th AIAAAerospace Sciences Meeting Including the New Horizons and Aerospace Exposition.Orlando,United States,2011.
    [15]Xu J Y.Structural dynamic characteristics of inflatable return vehicle[D].Harbin Institute of Technology,2012.(in Chinese)许家裕.充气式返回飞行器的结构动态特性分析[D].哈尔滨工业大学,2012.
    [16]Pan S.Numerical simulation method and massively parallel computation of hypersonic aerodynamics[D].National University of Defense Technology,2010.(in Chinese)潘沙.高超声速气动热数值模拟方法及大规模并行计算研究[D].国防科学技术大学,2010.
    [17]Zhou Y J,Meng S H,Xie W H,et al.Multi field coupling numerical study on thermal environment and structural heat transfer of hypersonic vehicle[J].Journal of Aeronautics,2016,37(9):2739-2748.(in Chinese)周印佳,孟松鹤,解维华,等.高超声速飞行器热环境与结构传热的多场耦合数值研究[J].航空学报,2016,37(9):2739-2748.
    [18]Wang J.Prediction and control of aerodynamic thermal ablation for hypersonic vehicle[D].South China University of Technology,2013.(in Chinese)王俊.高超声速飞行器气动热烧蚀预测与控制研究[D].华南理工大学,2013.
    [19]Min X L,Pan T,Guo H L,et al.Reentry trajectory optimization of manned spacecraft in deep space flight[J].Chinese Space Science and Technology,2009,29(4):8-12.(in Chinese)闵学龙,潘腾,郭海林,等.载人航天器深空飞行返回再入轨迹优化[J].中国空间科学技术,2009,29(4):8-12.
    [20]Huang G Q,Lu Y P,Nan Y,et al.Review of numerical algorithm for trajectory optimization of aircraft[J].Scientia Sinica Technologica,2012,(9):1016-1036.(in Chinese)黄国强,陆宇平,南英,等.飞行器轨迹优化数值算法综述[J].中国科学:技术科学,2012(9):1016-1036.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700