柔性充气结构在无人系统中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of Flexible In? atable Structure in the Unmanned System
  • 作者:李沫宁 ; 孟军辉 ; 刘莉
  • 英文作者:LI Moning;MENG Junhui;LIU Li;School of Aerospace Engineering,Beijing Institute of Technology;Key Laboratory of Dynamics and Control of Flight Vehicle,Ministry of Education;
  • 关键词:柔性充气结构 ; 航空航天 ; 软体机器人 ; 无人系统 ; 柔性气囊材料 ; 折叠展开技术 ; 动力学仿真
  • 英文关键词:Flexible Inflatable Structure;;Aviation and Aerospace;;Soft Robot;;Unmanned System;;Flexible Airbag Material;;Folding and Unfolding Technology;;Dynamic Simulation
  • 中文刊名:UMST
  • 英文刊名:Unmanned Systems Technology
  • 机构:北京理工大学宇航学院;飞行器动力学与控制教育部重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:无人系统技术
  • 年:2019
  • 期:v.2
  • 基金:教育部重点实验室创新基金(2017CX02001);; 北京理工大学学术启动计划(3010011181807)
  • 语种:中文;
  • 页:UMST201901008
  • 页数:10
  • CN:01
  • ISSN:10-1565/TJ
  • 分类号:52-61
摘要
柔性充气结构凭借其质量轻、造价低、可折叠展开和控制灵活等优点,在航空航天和软体机器人等领域都有广阔的应用前景,逐渐引起国内外研究者的重视。介绍了柔性充气结构在大面积天线、太阳能电池帆板、遮光罩、充气式太空舱、充气式无人机、飞艇、柔性充气式机器人等不同工业领域内的无人系统的应用与研究现状,分析了柔性充气结构作为承力或功能结构区别于传统刚性结构的特点,并对充气结构研制过程中所面临的关键技术,如高性能柔性气囊材料技术、折叠与展开技术、动力学建模与仿真等进行了总结,旨在为相关领域的研究与应用提供初步参考。
        With the advantages of light weight,low cost,foldable and flexible shape,flexible inflatable structure has a broad application prospect in the fields of aerospace and soft robot. Gradually,researchers at home and abroad pay attention to it. This paper introduces the application and research status of unmanned systems with flexible inflatable structures in different industrial fields,such as large area antenna,solar cell panel,sun shade,inflatable space capsule,inflatable UAV,airship,flexible inflatable robot,etc. It analyzes the characteristics of flexible inflatable structures as the bearing or functional structure is different from traditional rigid structures,and the key to the development of inflatable structures,such as high performance flexible material,folding and unfolding technology,dynamic modeling and simulation,etc. The technology is summarized to provide a preliminary reference for research and application in related fields.
引文
[1]Yang W,Wang H T,Li T F,et al.X-mechanics:an endless frontier[J].SCIENCE CHINA Physics,Mechanics&Astronomy,2019,62(1).
    [2]贺卫亮.充气展开式结构在深空探测中的应用前景[C].深空探测技术与应用科学国际会议,2002.
    [3]王翔.充气展开太空舱的发展历程[J].太空探索,2016,(8):24-27.
    [4]Freeland R,Veal G.Significance of the inflatable antenna experiment technology[C].39th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference and Exhibit,April 20-23,1998.
    [5]马小飞,宋燕平,韦娟芳,等.充气式空间可展开天线结构概述[J].空间电子技术,2006,3(3):10-15.
    [6]卫剑征,苗常青,杜星文.充气太阳能帆板展开动力学数值模拟预报[J].宇航学报,2007,28(2):322-326.
    [7]Cadogan D P,Lin J K.Inflatable solar array technology[C].AIAA Aerospace Sciences Meeting,January 11-14,1999.
    [8]Clem A,Smith S,Main J.A pressurized deployment model for inflatable space structures[C].AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,April 3-6,2013.
    [9]Graybeal N,Craig J,Whorton M.Deployment modeling of an inflatable solar sail spacecraft[C].AIAA Guidance,Navigation,and Control Conference and Exhibit,August21-24,2006:1.
    [10]崔乃刚,刘家夫,邓连印,等.太阳帆充气支撑管展开动力学分析[J].宇航学报,2010,31(6):1521-1526.
    [11]荣成成,左光,陈冲,等.充气式再入航天器总体方案及关键技术初探[J].航天返回与遥感,2015,36(1):16-23.
    [12]李爽,江秀强.火星进入减速器技术综述与展望[J].航空学报,2015,36(2):422-440.
    [13]王娟.中国空间技术研究院充气式太空舱研制获新突破[J].军民两用技术与产品,2016,11(21):16-16.
    [14]宋博.充气展开自支撑结构力学特性研究[D].哈尔滨:哈尔滨工业大学,2015.
    [15]周思达,周小陈.空间伸展臂的技术现状与难点[J].中国空间科学技术,2014,V34(6):38-50.
    [16]Wei J,Tan H,Wang W,et al.Deployable dynamic analysis and on-orbit experiment for inflatable gravitygradient boom[J].Advances in Space Research,2015,55(2):639-646.
    [17]Clery D,Normile D.Bepi Colombo set to probe Mercury's mysteries European-Japanese mission will examine idea that innermost planet formed out past Mars[J].Amer Assoc Advancement Science,2018,362(6410):11-12.
    [18]Slade R,Sharp P,Jones R,et al.Analysis,optimization and probabilistic assessment of an airbag landing system for the Exo Mars space mission[J].Aiaa Journal,2006,2:1057-1065.
    [19]黄伟.运载火箭伞降回收着陆技术概述[J].航天返回与遥感,2017,38(3):1-12.
    [20]李利良,郭伟民,何家芳.国外近空间飞艇的现状和发展[J].兵工自动化,2008,27(2):32-34.
    [21]Qi R,Khajepour A,Melek W W,et al.Design,kinematics,and control of a multijoint soft Inflatable arm for human-safe interaction[J].IEEE Transactions on Robotics,2017,33(3):594-609.
    [22]陈立立,李玲,郭正,等.充气机翼保形设计与气动特性分析[J].航空工程进展,2015,6(1):18-25.
    [23]Best C M,Wilson J P,Killpack M D.Control of a pneumatically actuated,fully inflatable,fabric-based,humanoid robot[C].Ieee-Ras International Conference on Humanoid Robots,November 3-5,2015.
    [24]侯涛刚,王田苗,苏浩鸿,等.软体机器人前沿技术及应用热点[J].科技导报,2017,35(18):20-28.
    [25]费燕琼,庞武,于文博.气压驱动软体机器人运动研究[J].机械工程学报,2017,53(13):14-18.
    [26]许彬彬.充气式螺旋纯扭转软体机器人模块的研究[D].哈尔滨:哈尔滨工业大学,2017.
    [27]Hawkes E W,Blumenschein L H,Greer J D,et al.A soft robot that navigates its environment through growth[J].Science Robotics,2017,2(8).
    [28]Voisembert S,Riwan A,Mechbal N,et al.A novel inflatable robot with constant and continuous volume[C].IEEE International Conference on Robotics and Automation,May 9-13,2011.
    [29]Sanan S,Ornstein M H,Atkeson C G.Physical human interaction for an inflatable manipulator[C].Engineering in Medicine and Biology Society,Embc,2011 International Conference of the IEEE,August 30-September 3,2011.
    [30]韩亮亮,杨健,赵颖,等.基于仿章鱼软体机器人空间碎片柔性自适应捕获装置的设想[J].载人航天,2017,23(4):469-472.
    [31]沈自才.充气展开式结构在航天器中的应用[J].航天器环境工程,2008,25(4):31-37.
    [32]Rus D,Tolley M T.Design,fabrication and control of soft robots[J].Nature,2015,521(7553):467-475.
    [33]Cho K J,Koh J S,Kim S,et al.Review of manufacturing processes for soft biomimetic robots[J].International Journal of Precision Engineering and Manufacturing,2009,10(3):171-181.
    [34]姚涛涛,张玉珠.可展开航天器的充气系统分析[J].国际太空,2008(1):32-35.
    [35]刘福寿.大型空间结构动力学等效建模与振动控制研究[D].南京:南京航空航天大学,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700