光催化在能源化工领域的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress of photocatalysis on energy and chemical industry
  • 作者:马国锋
  • 英文作者:Ma Guofeng;Chemical Department of China Petroleum & Chemical Corporation;
  • 关键词:光催化 ; 合成氨 ; 甲烷转化 ; CO_2还原
  • 英文关键词:photocatalysis;;amonia fixation;;methane conversion;;CO_2 reduction
  • 中文刊名:SYHG
  • 英文刊名:Petrochemical Technology
  • 机构:中国石油化工股份有限公司化工事业部;
  • 出版日期:2019-07-15
  • 出版单位:石油化工
  • 年:2019
  • 期:v.48
  • 语种:中文;
  • 页:SYHG201907016
  • 页数:6
  • CN:07
  • ISSN:11-2361/TQ
  • 分类号:105-110
摘要
综述了光催化技术在能源化工领域内的研究进展,包括光催化合成氨反应、光催化甲烷转化以及光催化CO_2还原。结合目前的研究现状,分析了光催化技术在这些领域进行应用仍存在的问题,对该技术在未来可能的应用前景和发展方向提出了展望。
        The research progress of photocatalytic technology in energy and chemical industry was reviewed. Current status of the photocatalytic technology on ammonia synthesis,methane conversion and CO_2 reduction had been summarized. Based on the recent research progress,the existing problems in the application of photocatalytic technology in these fields are analyzed,and the possible application prospects and development directions of photocatalytic technology in the future are put forward.
引文
[1]Chen Xingzhu,Li Neng,Kong Zhouzhou,et al.Photocatalytic fixation of nitrogen to ammonia:State-of-the-art advancements and future prospects[J].Mater Horizon,2018,5(1):9-27.
    [2]Kou Jiahui,Lu Chunhua,Wang Jian,et al.Selectivity enhancement in heterogeneous photocatalytic transformations[J].Chem Rev,2017,117(3):1445-1514.
    [3]Yoon T P,Ischay M A,Du J.Visible light photocatalysis as a greener approach to photochemical synthesis[J].Nat Chem,2010,2(7):527-532.
    [4]Linsebigler A L,Lu Guangquan,Yates J T.Photocatalysis on TiO2 surfaces:Principles,mechanisms,and selected results[J].Chem Rev,1995,95(3):735-758.
    [5]Ravelli D,Fagnoni M,Albini A.Photoorganocatalysis.What for?[J].Chem Soc Rev,2013,42(1):97-113.
    [6]Di Jun,Xia Jiexiang,Li Huaming,et al.Bismuth oxyhalide layered materials for energy and environmental applications[J].Nano Energy,2017,41:172-192.
    [7]Borgarello E,Kiwi J,Pelizzetti E,et al.Photochemical cleavage of water by photocatalysis[J].Nature,1981,289(5794):158-160.
    [8]Schultz D M,Yoon T P.Solar synthesis:Prospects in visible light photocatalysis[J].Science,2014,343(6174):985.
    [9]Voiry D,Shin H S,Loh K P,et al.Low-dimensional catalysts for hydrogen evolution and CO2 reduction[J].Nat Rev Chem,2018,2(1):0105.
    [10]Brown K A,Harris D F,Wilker M B,et al.Light-driven dinitrogen reduction catalyzed by a CdS:Nitrogenase MoFe protein biohybrid[J].Science,2016,352(6284):448-450.
    [11]Niu Kaiyang,Xu You,Wang Haicheng,et al.A spongy nickel-organic CO2 reduction photocatalyst for nearly 100%selective CO production[J].Sci Adv,2017,3(7):e1700921.
    [12]Zhao Yufei,Zhao Yunxuan,Waterhouse G I N,et al.Layered-double-hydroxide nanosheets as efficient visiblelight-driven photocatalysts for dinitrogen fixation[J].Adv Mater,2017,29(42):1703828.
    [13]Hu Anhua,Guo Jingjing,Pan Hui,et al.Selective functionalization of methane,ethane,and higher alkanes by cerium photocatalysis[J].Science,2018,361(6403):668-672.
    [14]Kandemir T,Schuster M E,Senyshyn A,et al.The haberbosch process revisited:On the real structure and stability of“ammonia iron”under working conditions[J].Angew Chem,Int Ed,2013,52(48):12723-12726.
    [15]Medford A J,Hatzell M C.Photon-driven nitrogen fixation:Current progress,thermodynamic considerations,and future outlook[J].ACS Catal,2017,7(4):2624-2643.
    [16]Ogura K,Kataoka M.Photochemical conversion of methane[J].J Mol Catal,1988,43(3):371-379.
    [17]Hirakawa H,Hashimoto M,Shiraishi Y,et al.Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide[J].J Am Chem Soc,2017,139(31):10929-10936.
    [18]Li Hao,Shang Jian,Ai Zhihui,et al.Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed{001}facets[J].J Am Chem Soc,2015,137(19):6393-6399.
    [19]Wang Shengyao,Hai Xiao,Ding Xing,et al.Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water[J].Doi:10.1002/adma.201701774.
    [20]Dong Guohui,Ho Wingkei,Wang Chuanyi.Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies[J].J Mater Chem A,2015,3(46):23435-23441.
    [21]Azofra L M,Sun Chenghua,Cavallo L,et al.Feasibility of N2 binding and reduction to ammonia on Fe-deposited MoS22D sheets:A DFT study[J].Chem Eur J,2017,23(34):8275-8279.
    [22]Hao Yuchen,Dong Xiaoli,Zhai Shangru,et al.Hydrogenated bismuth molybdate nanoframe for efficient sunlight-driven nitrogen fixation from air[J].Chem Eur J,2016,22(52):18722-18728.
    [23]Mao Chengliang,Yu Linghao,Li Jie,et al.Energy-confined solar thermal ammonia synthesis with K/Ru/TiO2-xHx[J].Appl Catal,B,2018,224:612-620.
    [24]Yuliati L,Yoshida H.Photocatalytic conversion of methane[J].Chem Soc Rev,2008,37(8):1592-1602.
    [25]Sastre F,Fornés V,Corma A,et al.Selective,room-temperature transformation of methane to C1 oxygenates by deep UVphotolysis over zeolites[J].J Am Chem Soc,2011,133(43):17257-17261.
    [26]Murcia-López S,Villa K,Andreu T,et al.Partial oxidation of methane to methanol using bismuth-based photocatalysts[J].ACS Catal,2014,4(9):3013-3019.
    [27]Taylor C E,Noceti R P.New developments in the photocatalytic conversion of methane to methanol[J].Catal Today,2000,55(3):259-267.
    [28]Yu Linhui,Shao Yu,Li Danzhen.Direct combination of hydrogen evolution from water and methane conversion in a photocatalytic system over Pt/TiO2[J].Appl Catal,B,2017,204:216-223.
    [29]Chen Xuxing,Li Yunpeng,Pan Xiaoyang,et al.Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts[J].Nat Commun,2016,7:12273.
    [30]Meng Lingshu,Chen Zhenye,Ma Zhiyun,et al.Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces[J].Energy Environ Sci,2018,11(2):294-298.
    [31]Song Hui,Meng Xianguang,Wang Zhoujun,et al.Visiblelight-mediated methane activation for steam methane reforming under mild conditions:A case study of Rh/TiO2 catalysts[J].ACS Catal,2018,8(8):7556-7565.
    [32]Li Wei,He Da,Hu Guoxiang,et al.Selective CO production by photoelectrochemical methane oxidation on TiO2[J].ACS Central Sci,2018,4(5):631-637.
    [33]Aresta M,Dibenedetto A,Angelini A.Catalysis for the valorization of exhaust carbon:From CO2 to chemicals,materials,and fuels.technological use of CO2[J].Chem Rev,2014,114(3):1709-1742.
    [34]Inoue T,Fujishima A,Konishi S,et al.Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders[J].Nature,1979,277(5698):637-638.
    [35]Tseng I,Wu J C S.Chemical states of metal-loaded titania in the photoreduction of CO2[J].Catal Today,2004.97(2/3):113-119.
    [36]Linic Suljo,Christopher P,Ingram D B.Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J].Nat Mater,2011,10(12):911-921.
    [37]Zhang Zhenyi,Wang Zheng,Cao Shaowen,et al.Au/Pt nanoparticle-decorated TiO2 nanofibers with plasmon-enhanced photocatalytic activities for solar-to-fuel conversion[J].J Phys Chem C,2013,117(49):25939-25947.
    [38]Furukawa H,Cordova K E,O’Keeffe M,et al.The chemistry and applications of metal-organic frameworks[J].Science,2013,341(6149):974.
    [39]Wang Cheng,Xie Zhigang,de Krafft K E,et al.Doping metal-organic frameworks for water oxidation,carbon dioxide reduction,and organic photocatalysis[J].J Am Chem Soc,2011,133(34):13445-13454.
    [40]Zhang Huabin,Wei Jing,Dong Juncai,et al.Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework[J].Angew Chem,Int Ed,2016,55(46):14310-14314.
    [41]Choi Kyungmin,Kim Dohyung,Rungtaweevoranit B,et al.Plasmon-enhanced photocatalytic CO2 conversion within metal-organic frameworks under visible light[J].J Am Chem Soc,2017,139(1):356-362.
    [42]Ye Lu,Gao Yan,Cao Shuyan,et al.Assembly of highly efficient photocatalytic CO2 conversion systems with ultrathin two-dimensional metal-organic framework nanosheets[J].Appl Catal,B,2018,227:54-60.
    [43]Di Jun,Zhu Chao,Ji Mengxia,et al.Defect-rich Bi12O17Cl2 nanotubes self-accelerating charge separation for boosting photocatalytic CO2 reduction[J].Angew Chem,Int Ed,2018,57(45):14847-14851.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700