基于CompactRIO的水声信号监测系统设计方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Design Method of Broadband Underwater Acoustic Signal Monitoring System Based on CompactRIO
  • 作者:潘明 ; 张国龙
  • 英文作者:PAN Ming;ZHANG Guolong;Unit 94,No.91388 Troops of PLA;
  • 关键词:CompactRIO嵌入式系 ; 信号监测 ; 宽频带
  • 英文关键词:CompactRIO embedded system;;signal monitoring;;broadband
  • 中文刊名:JCGC
  • 英文刊名:Ship Electronic Engineering
  • 机构:91388部队94分队;
  • 出版日期:2019-06-20
  • 出版单位:舰船电子工程
  • 年:2019
  • 期:v.39;No.300
  • 语种:中文;
  • 页:JCGC201906038
  • 页数:4
  • CN:06
  • ISSN:42-1427/U
  • 分类号:160-163
摘要
论文主要以NI公司CompactRIO嵌入式系统为核心、4路模拟NI-9222为采集设备,同时以便携式计算机为平台、Labview为编程工具设计显控系统。整个系统采用光纤网络通信技术实现显控端与下位机端数据交换,并以Labview专用二进制数据压缩方式进行存储与回放。水下系统采用全向、高灵敏度水听器且安装固定于仿生鱼鳍导流支架上,使得整个水下结构在任何海况与流向时都能保证稳定状态且处在顺流方向。因此,该系统具有数据吞吐量大、多路通道同时采集、宽频带、信号实时处理显示、抗恶劣海况等特点。该系统在海洋资源探测、海上军事领域具有重要应用价值。
        In this paper,NI CompactRIO embedded system is the core,4 analog NI-9222 is used for the acquisition of equipment,while the portable computer is taken as a platform,Labview is programming tools for the design of display control system. The entire system uses optical fiber network communication technology to achieve the control terminal and the next crew-side data exchange,and Labview dedicated binary data compression is used for storage and playback. Underwater system uses omni-directional,high-sensitivity hydrophone and it is installed and fixed on the bionic fins diversion bracket,making the entire underwater structure in any sea conditions and flow can guarantee a stable state and in the downstream direction. Therefore,the system has the characteristics of large data throughput,simultaneous acquisition of multiple channels,wide band,real-time signal processing and display of anti-harsh sea conditions. The system has an important application value in the exploration of marine resources and the maritime military.
引文
[1]Aleksandar Dogandzic,Arye Nihorai. Space-time fading channel estimation and symbol detection in unknown spatially correlated noise[J]. IEEE Transactions on signal Processing,2002,50(3):325-459.
    [2]Rong qing Hui,Maurice O’Sullivan. Fiber Optic Measurement Techniques[M]. Elsevier Academic press. USA,2009:12-15.
    [3]leBlanc L R,Beaujean P J. Spatio-temporal processing of coherent acoustic communication data in shallow water[J]. IEEE J. Oceanic eng,2000,25(1):20-32.
    [4]KILFOYLED,BAGGEROER A. The state of the art in underwater acoustic telemetry[J]. IEEE J Oceanic Eng,2000,25(1):4-27.
    [5]殷敬伟.多途信道中Pattern时延差编码水声通信研究[J].哈尔滨:哈尔滨工程大学水声工程学院,2007:18-22.
    [6]陈韶华,相敬林,罗建.水声通信多径时延估计的高分辨方法研究[J].系统仿真学报,2005,17(11):305-677.
    [7]王之程,陈宗岐等.舰船噪声测量与分析[M].北京:国防工业出版社,2004:122-145
    [8]郭文彬,桑林.通信原理-基于Matlab的计算机仿真[M].北京:北京邮电大学出版社,2006:18-25.
    [9]史阳,杨坤德,杨益新等.水声数据采集与分析软件的设计与实现[J].电声技术,2012,36(9):11-65.
    [10]刘伯胜,雷家煜.水声学原理[M].哈尔滨:哈尔滨工程大学出版社,2002:39-52.
    [11]惠俊英等.水下声通信[M].北京:国防工业出版社,1992:58-64.
    [12]童峰,许鹭等,王清池.水声数据传输系统中的同步信号处理[J].厦门大学学报,2001,40(3):684-685.
    [13]美国国家仪器. http://www.ni.com[EB/OL].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700