轧制处理对生物医用Zn-Mg合金组织和性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Rolling Treatment on Microstructure and Property of Biomedical Zn-Mg Alloy
  • 作者:柯斌 ; 何代华 ; 李俊菲 ; 王姣姣 ; 姚瑶
  • 英文作者:KE Bin;HE Daihua;LI Junfei;WANG Jiaojiao;YAO Yao;School of Materials Science and Engineering, University of Shanghai for Science and Technology;Shanghai MicroPort Medical (Group) Co., Ltd.;
  • 关键词:生物医用Zn-Mg合金 ; 轧制 ; 再结晶 ; 显微组织 ; 力学性能
  • 英文关键词:biomedical Zn-Mg alloy;;rolling;;recrystallization;;microstructure;;mechanical property
  • 中文刊名:SHHA
  • 英文刊名:Nonferrous Metal Materials and Engineering
  • 机构:上海理工大学材料科学与工程学院;上海微创医疗器械(集团)有限公司;
  • 出版日期:2019-06-15
  • 出版单位:有色金属材料与工程
  • 年:2019
  • 期:v.40;No.192
  • 基金:上海市科研计划资助项目(15ZR1428300);; 中国科学院特种无机涂层重点实验室开放基金项目(KLICM-2014-11)
  • 语种:中文;
  • 页:SHHA201903002
  • 页数:7
  • CN:03
  • ISSN:31-2125/TF
  • 分类号:13-19
摘要
采用金相显微镜、X射线衍射仪、扫描电子显微镜、万能材料试验机和电化学工作站等设备,分析和研究了轧制变形对生物医用Zn-Mg合金的显微组织及力学性能的影响。结果表明:铸态、轧制态的合金均由Zn和Mg2Zn11两相组成;在轧制变形过程中,物相未发生改变,抗拉强度逐渐提高,伸长率先提高后降低,耐腐蚀性能逐渐下降;随着轧制变形量的增加,晶粒沿轧制方向的变形程度逐渐增大,直至出现纤维状组织。在相同的退火条件下,轧制变形量越大的Zn-Mg合金,再结晶晶粒尺寸越细小、均匀。
        The influences of rolling treatment on the microstructure and mechanical property of biomedical Zn-Mg alloy were studied by using metallographic microscope, X-ray diffractometer,scanning electron microscope, universal material testing machine, electrochemical workstation, and so on. The results show that both the as-cast and as-rolled alloys are composed of Zn and Mg2 Zn11. During the rolling process, the phases are not changed, the tensile strength increases gradually, the elongation firstly increases and then decreases, and the corrosion resistance decreases gradually. With the increase of rolling deformation, the deformation degree of the grains increases along the rolling direction until fiber tissue appears. Under the same annealing conditions, the size of the recrystallized grains is finer and more uniform after larger rolling deformation.
引文
[1]YUN Y,DONG Z,LEE N.Revolutionizing biodegradable metals[J].Materials Today,2009,12(10):22-32.
    [2]PEUSTER M,HESSE C,SCHLOO T.Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta[J].Biomaterials,2006,27(28):4955-4962.
    [3]PIERSON D,EDICK J,TAUSCHER A.A simplified invivo approach for evaluating the bioabsorbable behavior of candidate stent materials[J].Journal of Biomedical Materials Research Part B:Applied Biomaterials,2012,100(1):58-67.
    [4]GU X,ZHENG Y,CHENG Y.In vitro corrosion and biocompatibility of binary magnesium alloys[J].Biomaterials,2009,30(4):484-498.
    [5]DI MARIO C,GRIFFITHS H U W,GOKTEKIN O.Drug-eluting bioabsorbable magnesium stent[J].Journal of Interventional Cardiology,2004,17(6):391-395.
    [6]LASTRA M D,PASTELIN R,CMACHO A.Zinc intervention on macrophages and lymphocytes response[J].Journal of Trace Elements in Medicine and Biology,2001,15(1):5-10.
    [7]CHENG J,LIU B,WU Y H.Comparative in vitro study on pure metals(Fe,Mn,Mg,Zn and W)as biodegradable metals[J].Journal of Materials Science&Technology,2013,29(7):619-627.
    [8]VOJTECH D,KUBASEK J,?ERAK J.Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation[J].Acta Biomaterialia,2011,7(9):3515-3522.
    [9]BOWEN P K,SHEARIERE R,ZHAO S.Biodegradable metals for cardiovascular stents:from clinical concerns to recent Zn-alloys[J].Advanced Healthcare Materials,2016,5(10):1121-1140.
    [10]ZHAO S,MCNAMARA C T,BOWEN P K.Structural characteristics and in vitro biodegradation of a novel ZnLi alloy prepared by induction melting and hot rolling[J].Metallurgical and Materials Transactions A,2017,48(3):1204-1215.
    [11]ZHAO S,SEITZ J M,EIFLER R.Zn-Li alloy after extrusion and drawing:Structural,mechanical characterization,and biodegradation in abdominal aorta of rat[J].Materials Science and Engineering:C,2017,76:301-312.
    [12]NIU J,TANG Z,HUANG H.Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application[J].Materials Science and Engineering:C,2016,69:407-413.
    [13]TANG Z,HUANG H,NIU J.Design and characterizations of novel biodegradable Zn-Cu-Mg alloys for potential biodegradable implants[J].Materials&Design,2017,117:84-94.
    [14]LI H F,XIE X H,ZHENG Y F.Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg,Ca and Sr[J].Scientific Reports,2015,5:10719.
    [15]李蒙,关蕾,风伟中,等.交叉轧制对TA1钛箔材组织和性能的影响[J].有色金属材料与工程,2018,39(5):28-32.
    [16]DAMBATTA M S,IZMAN S,KURNIAWAN D.Influence of thermal treatment on microstructure,mechanical and degradation properties of Zn-3 Mg alloy as potential biodegradable implant material[J].Materials&Design,2015,85:431-437.
    [17]SUN Y,ZHANG B,WANG Y.Preparation and characterization of a new biomedical Mg-Zn-Ca alloy[J].Materials&Design,2012,34:58-64.
    [18]张会,刘磊,周楠,等.Al-6.6Zn-1.7Mg-0.26Cu合金挤压材焊接接头的组织与性能[J].有色金属材料与工程,2018,39(4):16-20.
    [19]KUBáSEK J,VOJTECH D,JANLONSKA E.Structure,mechanical characteristics and in vitro degradation,cytotoxicity,genotoxicity and mutagenicity of novelbiodegradable Zn-Mg alloys[J].Materials Science and Engineering:C,2016,58:24-35.
    [20]LIU X,SUN J,YANG Y,et al.Microstructure,mechanical properties,in vitro degradation behavior and hemocompatibility of novel Zn-Mg-Sr alloys as biodegradable metals[J].Materials Letters,2016,162:242-245.
    [21]黄立龙,王聪兴,刘新宽,等.回复与再结晶退火对新型HSn70-1黄铜组织及性能的影响[J].有色金属材料与工程,2017,38(4):215-221.
    [22]胡赓祥.材料科学基础[M].上海:上海交通大学出版社,2010.
    [23]王斌.挤压工艺对Zn-Mg-Mn合金组织及性能的影响[D].沈阳:东北大学,2017.
    [24]陈振华.变形镁合金[M].北京:化学工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700