植物冷胁迫信号研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress of Plant Cold Stress Signals
  • 作者:秦晓惠 ; 李凯文 ; 段志坤
  • 英文作者:Qin Xiaohui;Li Kaiwen;Duan Zhikun;Institute of Plant Stress Biology,State Key Laboratory of Cotton Biology,Department of Biology,Henan University;
  • 关键词:冷胁迫 ; 冷害 ; 冻害 ; ICE1 ; CBF
  • 英文关键词:Cold stress;;Chilling injury;;Freezing injury;;ICE1;;CBF
  • 中文刊名:FZZW
  • 英文刊名:Molecular Plant Breeding
  • 机构:河南大学生命科学学院棉花生物学国家重点实验室植物逆境生物学教育部重点实验室;
  • 出版日期:2018-11-14
  • 出版单位:分子植物育种
  • 年:2018
  • 期:v.16
  • 语种:中文;
  • 页:FZZW201821060
  • 页数:8
  • CN:21
  • ISSN:46-1068/S
  • 分类号:317-324
摘要
低温影响植物的生长发育及地理分布,是制约作物产量和品质的重要因素。为更好地适应低温,植物体内生理生化过程发生明显变化,亲水蛋白、可溶性糖等渗透调节物质大量增加,膜组成改变,这一过程被称为冷驯化。ICE1-CBF-COR途径是主要的冷胁迫信号调节通路,多个基因在转录水平、翻译水平和翻译后修饰水平对ICE1和CBF进行修饰调控,参与到冷胁迫调控中。本研究综述了冷胁迫对植物的影响,最新的冷胁迫信号调控机制,为进一步研究植物的低温应答提供理论依据。
        Cold stress severely influences the growth, development, and geographic distribution of plants, which is a key factor of crop yield and quality restriction. For better adaption of low temperature, the phycological and biochemical processes inside plants changes significantly, osmotic adjustment substances including hydrophilic protein as well as soluble sugar increase substantially, and membrane composition changes. The process is called cold acclimation. ICE1-CBF-COR are key signaling regulatory pathway of cold stress. Multiple genes modify and regulate ICE1 and CBF at transcriptional level, translational level and posttranslational level, and participate in the regulation of cold stress. This study reviewed the effect of cold stress on plant and the latest signaling regulation mechanism of cold stress, which would provide theoretical reference for further study of plant cold response.
引文
Agarwal M.,Hao Y.,Kapoor A.,Dong C.H.,Fujii H.,Zheng X.,and Zhu J.K.,2006,A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance,J.Biol.Chem.,281(49):37636-37645
    Bogdanovic J.,Mojovic M.,Milosavic N.,Mitrovic A.,Vucinic Z.,and Spasojevic I.,2008,Role of fructose in the adaptation of plants to cold-induced oxidative stress,Eur.Biophys.J.,37(7):1241-1246
    Boyer J.S.,1982,Plant productivity and environment,Science,218(4571):443-448
    Braam J.,and Davis,R.W.,1990,Rain-,wind-,and touchinduced expression of calmodulin and calmodulin-related genes in Arabidopsis,Cell,60(3):357-364
    Cao S.,Ye M.,and Jiang S.,2005,Involvement of GIGANTEAgene in the regulation of the cold stress response in Arabidopsis,Plant Cell Rep.,24(11):683-690
    Chinnusamy V.,Ohta M.,Kanrar S.,Lee B.H.,Hong,X.,Agarwal,M.,and Zhu,J.K.,2003,ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis,Genes Dev.,17(8):1043-1054
    Chinnusamy V.,Zhu J.,and Zhu J.K.,2007,Cold stress regulation of gene expression in plants,Trends Plant Sci.,12(10):444-451
    Cheong Y.H.,Kim K.N.,Pandey G.K.,Gupta R.,Grant J.J.,and Luan S.,2003,CBL1,a calcium sensor that differentially regulates salt,drought,and cold response in Arabidopsis,Plant Cell,15(8):1833-1845
    Cook D.,Fowler S.,Fiehn O.,and Thomashow M.F.,2004,Aprominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis,Proc.Natl.Acad.Sci.USA,101(42):15243-15248
    Davy de Virville J.,Cantrel C.,Bousquet A.L.,Hoffelt M.,Tenreiro A.M.,Vaz Pinto V.,Arrabaca J.D.,Caiveau O.,Moreau F.,and Zachowski A.,2002,Homeoviscous and functional adaptations of mitochondrial membranes to growth temperature in soybean seedlings,Plant Cell Environ.,25(10):1289-1297
    Ding Y.,Li H.,Zhang X.,Xie Q.,Gong Z.,and Yang S.,2015,OST1 kinase m odulates freezing tolerance by enhancing ICE1 stability in Arabidopsis,Dev.Cell,32(3):278-289
    Doherty C.J.,Van Buskirk H.A.,Myers S.J.,and Thomashow M.F.,2009,Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance,Plant Cell,21(3):972-984
    Dong C.H.,Agarwal M.,Zhang Y.,Xie Q.,and Zhu J.K.,2006,The negative regulator of plant cold responses,HOS1,is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1,Proc.Natl.Acad.Sci.USA,103(21):8281-8286
    Dowgert M.F.,and Steponkus P.L.,1984,Behavior of the plasma membrane of isolated protoplasts during a freeze-thaw cycle,Plant Physiol.,75(6):1139-1151
    Fowler S.G.,Cook D.,and Thomashow M.F.,2005,Low temperature induction of Arabidopsis CBF1,2,and 3 is gated by the circadian clock,Plant Physiol.,137(3):961-968
    Fu C.X.,Xiao Z.H.,Gao F.,and Zhou Y.J.,2016,Progress on proteomics to reveal abiotic stress response in plant,Jiyinzuxue Yu Yingyong Shengwuxue(Genomics and Applied Biology),35(12):3569-3582(付晨曦,肖自华,高飞,周宜君,2016,植物应答非生物胁迫的蛋白质组学研究进展,35(12):3569-3582)
    Fukutaku Y.,and Yamada Y.,1984,Source of proline nitrogen in water-stressed soybean(Glycine max).II.Fate of15N-labeled protein,Plant Physiol.,61(4):622-628
    Furihata T.,Maruyama K.,Fujita Y.,Umezawa T.,Yoshida R.,Shinozaki K.,and Yamaguchi-Shinozaki K.,2006,Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1,Proc.Natl.Acad.Sci.USA,103(6):1988-1993
    Fursova O.V.,Pogorelko G.V.,and Tarasov V.A.,2009,Identification of ICE2,a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana,Gene,429(1-2):98-103
    Furuya T.,Matsuoka D.,and Nanmori T.,2013,Phosphorylation of Arabidopsis thaliana MEKK1 via Ca2+signaling as a part of the cold stress response,J.Plant Res.,126(6):833-840
    Griffith M.,Elfman B.,and Camm E.L.,1984,Accumulation of plastoquinone a during low temperature growth of winter rye,Plant Physiol.,74(3):727-729
    Griffith M.,and Yaish M.W.,2004,Antifreeze proteins in overwintering plants:a tale of two activities,Trends Plant Sci.,9(8):399-405
    Gusta L.V.,Wisniewski M.,Nesbitt N.T.,and Gusta M.L.,2004,The effect of water,sugars,and proteins on the pattern of ice nucleation and propagation in acclimated and nonacclimated canola leaves,Plant Physiol.,135(3):1642-1653
    Havaux M.,and Niyogi K.K.,1999,The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism,Proc.Natl.Acad.Sci.USA,96(15):8762-8767
    Hendrickson L.,Vlckova A.,Selstam E.,Huner N.,Oquist G.,and Hurry V.,2006,Cold acc limation of the Arabidopsis dgd1 mutant results in recovery from photosystem I-limited photosynthesis,FEBS Lett.,580(20):4959-4968
    Huang C.,Ding S.,Zhang H.,Du H.,and An L.,2011,CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana,Plant Sci.,181(1):57-64
    Ichimura K.,Mizoguchi T.,Yoshida R.,Yuasa T.,and Shinozaki K.,2000,Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6,Plant J.,24(5):655-665
    Ivanov A.G.,Hendrickson L.,Krol M.,Selstam E.,Oquist G.,Hurry V.,and Huner N.P.A.,2006,Digalactosyl-diacylglycerol deficiency impairs the capacity for photosynthetic intersystem electron transport and state transitions in Arabidopsis thaliana due to photosytem I acceptor sidelimitations,Plant Cell Physiol.,47(8):1146-1157
    Jia Y.,Ding Y.,Shi Y.,Zhang X.,Gong Z.,and Yang S.,2016,The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBFregulons in Arabidopsis,New Phytol.,212(2):345-353
    Kamata T.,and Uemura M.,2004,Solute accumulation in heat seedlings during cold acclimation:contribution to increased freezing tolerance,Cryo Letters,25(5):311-322
    Kadpel R.P.,and Rao N.A.,1985,Alterations in the biosynthesis of proteins and nucleic acids in finger millet(Eleucine coracana)seedlings during water stress and the effect of proline on protein biosynthesis,Plant Sci.,40(2):73-79
    Kim K.N.,Cheong Y.H.,Grant J.J.,Pandey G.K.,and Luan S.,2003,CIPK3,a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis,Plant Cell,15(2):411-423
    Klotke J.,Kopka J.,Gatzke N.,and Heyer A.G.,2004,Impact of soluble sugar concentrations on the acquisition of freezing tolerance in accessions of Arabidopsis thaliana with contrasting cold adaptation-evidence for a role of raffnose in cold acclimation,Plant Cell Environ.,27(11):1395-1404
    Kodama H.,Horiguchi G.,Nishiuchi T.,Nishimura M.,and Iba K.,1995,Fatty acid desaturation during chilling acclimation is one of the factors involved in conferring low-temperature tolerance to young tobacco leaves,Plant Physiol.,107(4):1177-1185
    Kolukisaoglu U.,Weinl S.,Blazevic D.,Batistic O.,and Kudla J.,2004,Calcium sensors and their interacting protein kinases:genomics of the Arabidopsis and rice CBL-CIPK signaling networks,Plant Physiol.,134(1):43-58
    Komatsu S.,Yang G.,Khan M.,Onodera H.,Toki S.,and Yamaguchi M.,2007,Over-expression of calcium dependent protein kinase 13 and calreticulin interacting protein 1confers cold tolerance on rice plants,Mol.Genet.Genomics,277(7):713-723
    Korn M.,Peterek S.,Mock H.P.,Heyer A.G.,and Hincha D.K.,2008,Heterosis in the freezing tolerance,and sugar and flavonoid contents of crosses between Arabidopsis thaliana accessions of widely varying freezing tolerance,Plant Cell Environ.,31(6):813-827
    Koster K.L.,and Lynch D.V.,1992,Solute accumulation and compartmentation during the cold acclimation of Puma rye,Plant Physiol.,98(1):108-113
    Lee H.,Xiong L.,Gong Z.,Ishitani M.,Stevenson B.,and Zhu J.K.,2001,The Arabidopsis HOS1 gene negatively regulates cold-signal transduction and encodes a RING finger protein that displays cold regulated nucleo-cytoplasmic partitioning,Genes Dev.,15(7):912-924
    Lee J.Y.,and Lee D.H.,2003,Use of serial analysis of gene expression technology to reveal changes in gene expression in Arabidopsis pollen undergoing cold stress,Plant Physiol.,132(2):517-529
    Li H.,Ye K.,Shi Y.,Cheng J.,Zhang X.,and Yang S.,2017,BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis,Mol.Plant,10(4):545-559
    Liu Z.,Jia Y.,Ding Y.,Shi Y.,Li Z.,Guo Y.,Gong Z.,and Yang S.,2017,Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response,Mol.Cell,66(1):117-128
    Matos A.R.,Hourton-Cabassa C.,Cicek D.,RezéN.,Arrabaca J.D.,Zachowski A.,and Moreau F.,2007,Alternative oxidase involvement in cold stress response of Arabidopsis thaliana fad2 and FAD3+cell suspensions altered in membrane lipid composition,Plant Cell Physiol.,48(6):856-865
    Miura K.,Jin J.B.,Lee J.,Yoo C.Y.,Stirm V.,Miura T.,Ashworth E.N.,Bressan R.A.,Yun D.J.,and Hasegawa P.M.,2007,SIZ1 mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis,Plant Cell,19(4):1403-1414
    Mustilli A.C.,Merlot S.,Vavasseur A.,Fenzi F.,and Giraudat J.,2002,Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production,Plant Cell,14(12):3089-3099
    Nikolopoulos D.Y.,and Manetas Y.,1991,Compatible solutes and in vitro stability of salsola soda enzymes:proline incompatibility,Phytochemistry,30(2):411-413
    Pearce R.S.,1988,Extracellular ice and cell shape in froststressed cereal leaves:a low-temperature scanning-electronmicroscopy study,Planta,175(3):313-324
    Plieth C.,1999,Temperature sensing by plants:calcium permeable channels as primary sensors-a model,J.Mem-brane Biol.,172(2):121-127
    Pramanik M.H.,and Imai R.,2005,Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice,Plant Mol.Biol.,58(6):751-762
    Rinne P.L.H.,Kaikuranta P.L.M.,Van der Plas L.H.W.,and Van der Schoo C.,1999,Dehydrins in cold acclimated apices of birch(Betula pubescens ehrh.):production,localization and potential role in rescuing enzyme function during dehydration,Planta,209(4):377-388
    Rodriguez M.C.,Petersen M.,and Mundy J.,2010,Mitogenactivated protein kinase signaling in plants,Annu.Rev.Plant Biol.,61(2):621-649
    Rohde P.,Hincha D.K.,and Heyer A.G.,2004,Heterosis in the freezing tolerance of crosses between two Arabidopsis thaliana accessions(Columbia0 and C24)that show differences in nonacclimated and acclimated freezing tolerance,Plant J.,38(5):790-799
    Satoh R.,Nakashima K.,Seki M.,Shinozaki K.,and Yamaguchi Shinozaki K.,2002,ACTCAT,a novel cis-acting element for proline and hypoosmolarity responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis,Plant Physiol.,130(2):709-719
    Shi Y.,Tian S.,Hou L.,Huang X.,Zhang X.,Guo H.,and Yang S.,2012,Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARRgenes in Arabidopsis,Plant Cell,24(6):2578-2595
    Siddiqui K.S.,and Cavicchioli R.,2006,Cold adapted enzymes,Annu.Rev.Biochem.,75(9):403-433
    Schieber M.,and Chandel N.S.,2014,ROS function in redox signaling and oxidative stress,Curr.Biol.,24(10):453-462
    Suzuki M.,Ketterling M.G.,and McCarty D.R.,2005,Quantitative statistical analysis of cis regulatory sequences in ABA/VP1 and CBF/DREB1 regulated genes of Arabidopsis,Plant Physiolo.,139(1):437-447
    Strand A.,Foyer C.H.,Gustafsson P.,Gardestrom P.,and Hurry V.,2003,Altering flux through the sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at low temperatures and the development of freezing tolerance,Plant Cell Environ.,26(4):523-535
    Takagi T.,Nakamura M.,Hayashi H.,Inatsugi R.,Yano R.,and Nishida I.,2003,The leaf order dependent enhancement of freezing tolerance in cold acclimated Arabidopsis rosettes is not correlated with the transcript levels of the cold inducible transcription factors of CBF/DREB1,Plant Cell Physiol.,44(9):922-931
    Taylor A.,Slack C.R.,and McPherson H.G.,1974,Plants under climatic stress:VI,Chilling and light effects on photosynthetic enzyme of sorghum and maize,Plant Physiol.,54(5):696-701
    Thomashow M.F.,1999,Plant cold acclimation,freezing tolerance genes and regulatory mechanisms,Ann.Rev.,50(50):571-599
    T覿htiharju S.,Sangwan V.,Monroy A.F.,Dhindsa R.S.,and Borg M.,1997,The induction of kin genes in cold acclimating Arabidopsis thaliana,evidence of a role for calcium,Planta,203(4):442-447
    Teige M.,Scheikl E.,Eulgem T.,Doczi R.,Ichimura K.,Shinozaki K.,Dangl J.L.,and Hirt H.,2004,The MKK2pathway mediates cold and salt stress signaling in Arabidopsis,Mol.Cell,15(1):141-152
    Uemura M.,and Steponkus P.L.,1989,Effect of cold acclimation on the incidence of two forms of freezing injury in protoplasts isolated from rye leaves,Plant Physiol.,91(3):1131-1137
    Uemura M.,Joseph R.A.,and Steponkus P.L.,1995,Cold acclimation of Arabidopsis thaliana(effect on plasma membrane lipid composition and freezeinduced lesions),Plant Physiol.,109(1):15-30
    Vogel J.T.,Zarka D.G.,Van Buskirk H.A.,Fowler S.G.,and Thomashow M.F.,2005,Roles of the CBF2 and ZAT12transcription factors in configuring the low temperature transcriptome of Arabidopsis,Plant J.,41(2):195-211
    Venekamp J.H.,1989,Regulation of cytosol acidity in plants under conditions of drought,Physiol.Plantarum,76(1):112-117
    Yang T.,Chaudhuri S.,Yang L.,Du L.,and Poovaiah B.W.,2010a,Acalcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants,J.Biol.Chem.,285(10):7119-7126
    Yang T.,Shad Ali G.,Yang L.,Du L.,Reddy A.S.,and Poovaiah B.W.,2010b,Calcium/calmodulin-regulated receptor-like kinase CRLK1 interacts with MEKK1 in plants,Plant Signal.Behav.,5(8):991-994
    Zarka D.G.,Voget J.T.,Cook D.,and Thomashow M.F.,2003,Cold induction of Arabidopsis CBF genes involves multiple ICE(inducer of CBF expression)promoter elements and a cold regulatory circuit that is desensitized by low temperature,Plant Physiol.,133(2):910-918
    Zhao C.,Zhang Z.,Xie S.,Si T.,Li Y.,and Zhu J.K.,2016,Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis,Plant Physiol.,171(4):2744-2759
    Zhao C.,and Zhu,J.K.,2016,The broad roles of CBF genes:from development to abiotic stress,Plant Signal.Behav.,11(8):1215794
    Zhang Z.,Li J.,Li F.,Liu H.,Yang W.,Chong K.,and Xu Y.,2017,Os MAPK3 Phosphorylates OsbHLH002/OsICE1 and inhibits its ubiquitination to activate OsTPP1 and enhances rice chilling tolerance,Dev.Cell,43(6):731-743
    Zhu J.,Shi H.,Lee B.H.,Damsz B.,Cheng S.,Stirm V.,Zhu J.K.,Hasegawa P.M.,and Bressan R.A.,2004,An Arabidopsis homeodomain transcription factor gene HOS9,mediates cold tolerance through a CBF independent pathway,Proc.Natl.Acad.Sci.USA,101(26):9873-9878
    Zinkevich N.S.,and Gutterman D.D.,2011,ROS-induced ROSrelease in vascular biology:redox-redox signaling,Am.J.Physiol.Heart C.,301(3):647-653

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700