Ni(OH)_2/N-rGO气凝胶材料的制备与电化学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The preparation and electrochemical properties of Ni(OH)_2/N-rGO aerogel materials
  • 作者:孙东亚 ; 林健荣 ; 陈荣强 ; 何丽雯 ; 孙婧婧 ; 廉冀琼
  • 英文作者:SUN Dongya;LIN Jianrong;CHEN Rongqiang;HE Liwen;SUN Jingjing;LIAN Jiqiong;Fujian Provincial Key Laboratory of Functional Materials and Applications,Xiamen University of Technology;College of Materials Science & Engineering,Huaqiao University;
  • 关键词:还原氧化石墨烯 ; Ni(OH)2 ; 介孔 ; 赝电容性能 ; 水热法
  • 英文关键词:reduced graphene oxide;;nickel hydroxide;;mesoporous;;pseudocapacitive performance;;hydrothermal process
  • 中文刊名:GNCL
  • 英文刊名:Journal of Functional Materials
  • 机构:厦门理工学院福建省功能材料及应用重点实验室;华侨大学材料科学与工程学院;
  • 出版日期:2019-01-30
  • 出版单位:功能材料
  • 年:2019
  • 期:v.50;No.424
  • 基金:国家自然科学基金资助项目(21103054,21003055,50872037);; 福建省功能材料及应用重点实验室开放基金资助项目(608160030215)
  • 语种:中文;
  • 页:GNCL201901031
  • 页数:7
  • CN:01
  • ISSN:50-1099/TH
  • 分类号:198-204
摘要
采用一步水热法在不同反应时间下制得了系列氢氧化镍与氮还原氧化石墨烯复合材料(简称NG)。用XRD、FT-IR、Raman、XPS、SEM和N2-BET方法表征材料的结构和物化性能。结果表明,所制备材料中Ni(OH)_2晶粒随着反应时间的增加而变大,且复合材料具有介孔特征。三电极体系下循环伏安、充放电和寿命测试结果表明,反应2h的NG-2样品具有最大电容量(1 280F/g)。且复合材料的电容量随反应时间呈先增大后减小的趋势,这与复合材料的孔特性、Ni(OH)_2晶粒大小和N原子掺杂有关。
        One-step hydrothermal method was used to fabricate a series of nickel hydroxide and nitrogen reduced graphene oxide composites(NGs)under different reaction time.The structure and physicochemical properties of the materials were characterized by XRD,FT-IR,Raman,XPS,SEM and N2-BET methods.The results show that the Ni(OH)_2 crystallites in the as-prepared material increased with the increase of reaction time,and the composites had mesoporous characteristics.The results of cyclic volt-ampere,charge-discharge and life test under three-electrode system show that the maximum capacitance of the series materials was 1 280F/g(NG-2)when the reaction time was 2h.The capacitance increased first and then decreased with the increasing reaction time,indicating that the capacitance of the materials would be related to the pore characteristics of the composite,Ni(OH)_2 grain size and the doping N atoms.
引文
[1]Zhang L,Zhang F,Yang X,et al.Porous 3Dgraphenebased bulk materials with exceptional high surface area and excellent conductivity for supercapacitors[J].Scientific Reports,2013,3(3):1408-1416.
    [2]Geim A K.Graphene:status and prospects[J].Science,2009,324(5934):1530-1534.
    [3]Huang X,Qi X,Boey F,et al.Graphene-based composites[J].Chemical Society Reviews,2012,41(2):666-686.
    [4]Nitta N,Wu F,Lee J T,et al.Li-ion battery materials:present and future[J].Materials Today,2015,18(5):252-264.
    [5]Choi B G,Yang M,Hong W H,et al.3Dmacroporous graphene frameworks for supercapacitors with high energy and power densities[J].ACS Nano,2012,6(5):4020-4028.
    [6]Cao X,Shi Y,Shi W,et al.Preparation of novel 3Dgraphene networks for supercapacitor applications[J].Small,2011,7(22):3163-3168.
    [7]Brousse T,Belanger D,Long J W.To be or not to be pseudocapacitive?[J].Journal of the Electrochemical Society,2015,162(5):A5185-A5189.
    [8]Yu Z,Tetard L,Zhai L,et al.Supercapacitor electrode materials:nanostructures from 0to 3dimensions[J].Energy&Environmental Science,2015,8(3):702-730.
    [9]Acerce M,Voiry D,Chhowalla M.Metallic 1T phase MoS2nanosheets as supercapacitor electrode materials[J].Nature Nanotechnology,2015,10(4):313-318.
    [10]Zhou M,Zhai Y,Dong S.Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide[J].Analytical Chemistry,2009,81(14):5603-5613.
    [11]Xu Li,Gong Xuehai,Sheng Peng,et al.Three dimensional graphene/carbon nanotube composite material and applications in supercapacitor[J].Jounal of Functional Materials,2016,47(S2):112-115(in Chinese).徐丽,巩学海,盛鹏,等.三维石墨烯/碳纳米管复合材料及其超级电容器应用[J].功能材料,2016,47(S2):112-115.
    [12]Wang L,Duan G,Zhu J,et al.High capacity supercapacitor material based on reduced graphene oxide loading mesoporpus murdochite-type Ni6MnO8nanospheres[J].Electrochimica Acta,2016,219:284-294.
    [13]Wang J,Zeng B,Fang C,et al.Electrochemical study of a polypyrrole film/decanethiol self-assembled monolayer on a gold electrode[J].Electroanalysis,2015,11(18):1345-1349.
    [14]Wan Hongli,Wan Li,Wang Xianbao,et al.Recent new development status of modification of graphene and its application in electrochemical detection[J].Jounal of Functional Materials,2016,47(8):8035-8042(in Chinese).万红利,万丽,王贤保,等.石墨烯的改性及其在电化学检测方面的研究新进展[J].功能材料,2016,47(8):8035-8042.
    [15]Yu D,Dai L.Self-assembled graphene/carbon nanotube hybrid films for supercapacitors[J].Journal of Physical Chemistry Letters,2015,1(2):467-470.
    [16]Cao X,Shi Y,Shi W,et al.Preparation of novel 3Dgraphene networks for supercapacitor applications[J].Small,2011,7(22):3163-3168.
    [17]Wang C,Xu J,Yuen M,et al.Hierarchical composite electrodes of nickel oxide nanoflake 3D graphene for high-performance pseudocapacitors[J].Advanced Functional Materials,2015,24(40):6372-6380.
    [18]Song M S,Lee K M,Yu R L,et al.Porously assembled2Dnanosheets of alkali metal manganese oxides with highly reversible pseudocapacitance behaviors[J].J Phys Chem C,2016,114(50):22134-22140.
    [19]Salunkhe R R,Lin J,Malgras V,et al.Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2,composites for asymmetric supercapacitor application[J].Nano Energy,2015,11(59):211-218.
    [20]Cao P,Wang L,Xu Y,et al.Facile hydrothermal synthesis of mesoporous nickel oxide/reduced graphene oxide composites for high performance electrochemical supercapacitor[J].Electrochimica Acta,2015,157:359-368.
    [21]Zhao Y,Ran W,He J,et al.High-performance asymmetric supercapacitors based on multilayer MnO2/graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability[J].Small,2015,11(11):1310-1319.
    [22]Zhang Z,Fu Y,Yang X,et al.Hierarchical MoSe2nanosheets/reduced graphene oxide composites as anodes for lithium-ion and sodium-ion batteries with enhanced electrochemical performance[J].Chemnanomat,2015,1(6):409-414.
    [23]Xiong C,Li T,Khan M,et al.A three-dimensional MnO2/graphene hybrid as a binder-free supercapacitor electrode[J].Rsc Advances,2015,5(104):85613-85619.
    [24]Zhai T,Wang F,Yu M,et al.3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors[J].Nanoscale,2013,5(15):6790-6796.
    [25]Hou J,Cao C,Idrees F,et al.Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors[J].ACS Nano,2015,9(3):2556.
    [26]Maiti U N,Lim J,Lee K E,et al.Three-dimensional shape engineered,interfacial gelation of reduced graphene oxide for high rate,large capacity supercapacitors[J].Advanced Materials,2014,26(4):615-619.
    [27]Luan F,Wang G,Ling Y,et al.High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode[J].Nanoscale,2013,5(17):7984-7990.
    [28]Huang Zhennan,Kou Shengzhong,Jin Dongdong,et al.Performance of Ni(OH)2/reduced graphene oxides composites for supercapacitors[J].Journal of Functional Materials,2015,46(5):5084-5088(in Chinese).黄振楠,寇生中,金东东,等.氢氧化镍/还原氧化石墨烯复合物的超级电容性能[J].功能材料,2015,46(5):5084-5088.
    [29]Chen H,Zhou S,Chen M,et al.Reduced graphene oxide-MnO2hollow sphere hybrid nanostructures as highperformance electrochemical capacitors[J].Journal of Materials Chemistry,2012,22(48):25207-25216.
    [30]Xia K,Li Q,Zheng L,et al.Controllable fabrication of2Dand 3Dporous graphene architectures using identical thermally exfoliated graphene oxides as precursors and their application as supercapacitor electrodes[J].Microporous&Mesoporous Materials,2017,237:228-236.
    [31]Meng X,Zhu J,Bi H,et al.Three-dimensional nickel hydroxide/graphene composite hydrogels and their transformation to NiO/graphene composites for energy storage[J].Journal of Materials Chemistry A,2015,3(43):21682-21689.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700