我国南亚热带森林群落先锋树种马尾松的水分利用特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Water use characteristics of pioneer tree Pinus massoniana in south subtropical forest community in China
  • 作者:王立景 ; 邓永红 ; 曾小平 ; 刘世忠 ; 孟泽 ; 李跃林
  • 英文作者:WANG Lijing;DENG Yonghong;ZENG Xiaoping;LIU Shizhong;MENG Ze;LI Yuelin;South China Botanical Garden, Chinese Academy of Sciences;Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:马尾松 ; 针阔混交林 ; 群落先锋树种 ; 树干液流 ; 演替中期 ; 水分利用特征 ; 鼎湖山国家级自然保护区 ; 广东省肇庆市
  • 英文关键词:Pinus massoniana;;coniferous and broad-leaved mixed forest;;community pioneer tree species;;stem sap flow;;midsuccession stage;;water utilization characteristics;;Dinghushan Mountain National Nature Reserve;;Zhaoqing city,Guangdong province
  • 中文刊名:ZNLB
  • 英文刊名:Journal of Central South University of Forestry & Technology
  • 机构:中国科学院华南植物园;中国科学院生态环境研究中心;中国科学院大学;
  • 出版日期:2019-01-22 13:39
  • 出版单位:中南林业科技大学学报
  • 年:2019
  • 期:v.39;No.213
  • 基金:国家自然科学基金项目(31670453;41430529);; 广东省自然科学基金项目(2014A030313746)
  • 语种:中文;
  • 页:ZNLB201903014
  • 页数:9
  • CN:03
  • ISSN:43-1470/S
  • 分类号:87-95
摘要
利用Granier热消散探针法(Thermal dissipation probes,TDP),对我国南亚热带鼎湖山针阔叶混交林中马尾松Pinus massoniana的树干液流变化进行了监测,结合同步监测的光合有效辐射、空气相对湿度、空气温度等环境因子进行了分析。研究表明:1)马尾松树干液流速率的日变化呈单峰型曲线,日间中午(13:00—14:00)的树干液流速率最高,湿季最高峰值为25.24 g·m~(-2)s~(-1),干季最高峰值为17.75 g·m~(-2)s~(-1),夜间也存在微量树干液流;2)马尾松树干液流速率主要受光合有效辐射和水汽压亏缺(vapor pressure deficiency,VPD)的影响,湿季中光合有效辐射起主要作用(P<0.001),干季中水汽压亏缺起主要作用(P<0.001);在干湿两季,树干液流速率滞后于光合有效辐射,提前于水汽压亏缺;3)湿季的蒸腾量显著高于干季(P<0.001);与森林恢复初期的马尾松树干液流相比,本地区树干液流速率相对较低,表明随着演替的进行,马尾松树干液流速率下降;4)研究结果揭示了华南地区的群落先锋树种马尾松在演替中期时的水分利用特征,对该地区森林恢复和生态环境建设提供了理论依据。
        The sap flow density of Pinus massoniana was monitored by means of Granier’s thermal dissipation probes method in a mixed conifer-broadleaf forest at mid-succession stage in Dinghushan mountain,south China.The environmental factors,such as photosynthetically active radiation(R_(PAR)),air temperature(T)and relative air humidity(H_(RAH))etc.,were recorded synchronously.The findings are as follows:1)The diurnal variation of sap flow rate of P.massoniana showed a single peak curve;the sap flow rate was the highest at noon(13:00~14:00),the highest in wet season was 25.24 g·m~(-2)s~(-1),and the highest in dry season was 17.75 g·m~(-2)s~(-1);There were also trace sap flow at night.2)The R_(PTSF) of P.massoniana was mainly affected by R_(PAR) and vapor pressure deficiency(D_(VPD));R_(PAR )played a main role in the wet season(P<0.001)and D_(VPD) played a main role in the dry season(P<0.001);In the dry and wet seasons,the R_(PTSF) lagged behind the R_(PAR),while the R_(PTSF) was earlier than the D_(VPD).3)The transpiration in wet season was significantly higher than in dry season(P<0.001);Compared with P.massoniana in the early stage of re-vegetation,the sap flow in this area was lower,which indicated that the sap flow of P.massoniana decreased as the succession progressed.4)The results revealed the characteristics of water use in the middle succession of P.massoniana,the pioneer species in south China,and provided a theoretical basis for forest restoration and ecological environment construction.
引文
[1]REYES-ACOSTA J L,LUBCZYNSKI M W.Mapping dryseason tree transpiration of an oak woodland at the catchment scale,using object-attributes derived from satellite imagery and sap flow measurements[J].Agricultural&Forest Meteorology,2013,174-175(3):184-201.
    [2]PENG S S,PIAO S,ZENG Z,et al.Afforestation in China cools local land surface temperature[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(8):2915-2919.
    [3]WULLSCHLEGER S D,MEINZER F C,VERTESSY R A.A review of whole-plant water use studies in tree[J].Tree Physiology,1998,18(8-9):499-512.
    [4]GREENWOOD E A N,BERESFORD J D.Evaporation from vegetation in landscapes developing secondary salinity using the ventilated-chamber technique:I.Comparative transpiration from juvenile Eucalyptus,above saline groundwater seeps[J].Journal of Hydrology,1979,42(3-4):369-382.
    [5]STEINBERG S,VAN BAVEL C H M,MCFARLAND M J.A gauge to measure mass flow rate of sap in stems and trunks of woody plants[J].Journal of the American Society for Horticultural Science,1989,114(3):466-472.
    [6]GRANIER A,BOBAY V,GASH J H C,et al.Vapour flux density and transpiration rate comparisons in a stand of maritime pine(Pinus pinaster Ait.)in Les Landes forest.[J].Agricultural&Forest Meteorology,1990,51(3):309-319.
    [7]GRANIER A.Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements[J].Tree Physiology,1987,3(4):309-319.
    [8]赵春彦,司建华,冯起,等.胡杨(Populus euphratica)树干液流特征及其与环境因子的关系[J].中国沙漠,2014,34(3):718-724.
    [9]LIU X,ZHANG B,ZHUANG J,et al.The Relationship between Sap Flow Density and Environmental Factors in the Yangtze River Delta Region of China[J].Forests,2017,8(3):1-17.
    [10]TEOBALDELLI M,MENCUCCINI M,PIUSSI P.Water table salinity,rainfall and water use by umbrella pine trees(Pinus pinea L.)[J].Plant Ecology,2004,171(1-2):23-33.
    [11]赵平,饶兴权,马玲,等.马占相思(Acacia mangium)树干液流密度和整树蒸腾的个体差异[J].生态学报,2006,26(12):4050-4058.
    [12]徐先英,孙保平,丁国栋,等.干旱荒漠区典型固沙灌木液流动态变化及其对环境因子的响应[J].生态学报,2008,28(3):895-905.
    [13]FUCHS S,LEUSCHNER C,LINK R,et al.Calibration and comparison of thermal dissipation,heat ratio and heat field deformation sap flow probes for diffuse-porous trees[J].Agricultural&Forest Meteorology,2017,151-161.
    [14]赵平,邹绿柳,饶兴权,等.成熟马占相思林的蒸腾耗水及年际变化[J].生态学报,2011,31(20):6038-6048.
    [15]任启文,忻富宁,李联地,等.冀北山地华北落叶松全生长季树干液流及蒸腾耗水特征[J].中南林业科技大学学报,2018,38(5):91-97.
    [16]MA C,LUO Y,SHAO M,et al.Environmental controls on sap flow in black locust forest in Loess Plateau,China[J].Scientific Reports,2017,7(1):1-12.
    [17]TOR-NGERN,PANTANA,OREN R,et al.Ecophysiological variation of transpiration of pine forests:synthesis of new and published results[J].Ecological Applications A Publication of the Ecological Society of America,2017,27(1):118-133.
    [18]郑怀舟,朱锦懋,李守中,等.长汀水土流失区生长季马尾松树干液流密度特征[J].亚热带资源与环境学报,2007,2(2):21-29.
    [19]涂洁,王永文.退化红壤区针阔混交林3种优势树种树干液流特征比较[J].河南农业科学,2016,45(12):120-126.
    [20]苏孙卿.马尾松阔叶树混交异龄林水源涵养功能的研究[J].安徽农业科学,2007,35(20):6110-6113.
    [21]方运霆,莫江明,黄忠良,等.鼎湖山马尾松、荷木混交林生态系统碳素积累和分配特征[J].热带亚热带植物学报,2003,11(1):47-52.
    [22]明安刚,张治军,谌红辉,等.抚育间伐对马尾松人工林生物量与碳贮量的影响[J].林业科学,2013,49(10):1-6.
    [23]庞宏东,王晓荣,张家来,等.湖北省马尾松天然林碳储量及碳密度特征[J].东北林业大学学报,2014(7):40-43.
    [24]XUE L,LI Q,CHEN H.Effects of a Wildfire on Selected Physical,Chemical and Biochemical Soil Properties in a Pinus massoniana Forest in South China[J].Forests,2014,5(12):2947-2966.
    [25]GE X,XIAO W,ZENG L,et al.The Link Between Litterfall,Substrate Quality,Decomposition Rate,and Soil Nutrient Supply in 30-Year-Old Pinus massoniana Forests in the Three Gorges Reservoir Area,China[J].Soil Science,2013,178(8):442-451.
    [26]周玮,周运超.施肥对马尾松幼苗及根系生长的影响[J].南京林业大学学报(自然科学版),2011,35(3):70-74.
    [27]王艺,丁贵杰.马尾松菌根化苗木对干旱的生理响应及抗旱性评价[J].应用生态学报,2013,24(3):639-645.
    [28]GRANIER A,HUC R,BARIGAH S T.Transpiration of natural rainforest and its dependence on climatic factors[J].Agricultural&Forest Meteorology,2014,78(78):19-29.
    [29]程静,欧阳旭,黄德卫,等.鼎湖山针阔叶混交林4种优势树种树干液流特征[J].生态学报,2015,35(12):4097-4104.
    [30]KOSTNER B.Estimating tree canopy water use via xylem sapflow in an old Norway spruce forest and a comparison with simulation-based canopy transpiration estimates[J].Annales Des Sciences Forestières,1998,55(1-2):125-139.
    [31]CAMPBELL G S,NORMAN J M.An introduction to environmental biophysics[M].2nd ed.NewYork:SpringerVerlag,1998:5-9.
    [32]CERMáK J,KUCERA J,BAUERLE W L,et al.Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees[J].Tree Physiology,2007,27(2):181-198.
    [33]朱丽薇,赵平,蔡锡安,等.木荷人工林蒸腾与冠层气孔导度特征及对环境因子的响应[J].热带亚热带植物学报,2010,18(6):599-606.
    [34]RESCO D D V,DíAZSIERRA R,GOULDEN M L,et al.Woody clockworks:circadian regulation of night-time water use in Eucalyptus globulus[J].New Phytologist,2013,200(3):743-752.
    [35]赵晓伟,赵平,朱丽薇,等.木荷树干夜间水分补充的季节动态及其与树形特征和叶片生物量的关系[J].植物生态学报,2013,37(3):239-247.
    [36]张慧玲,丁亚丽,陈洪松,等.喀斯特出露基岩生境两种典型乔木的树干液流特征[J].应用生态学报,2017,28(8):2431-2437.
    [37]BOVARD B D,CURTIS P S,VOGEL C S,et al.Environmental controls on sap flow in a northern hardwood forest[J].Tree Physiology,2005,25(1):31-38.
    [38]卢志朋,魏亚伟,李志远,等.辽西北沙地樟子松树干液流的变化特征及其影响因素[J].生态学杂志,2017,36(11):3182-3189.
    [39]PATANKAR R,QUINTON W L,HAYASHI M,et al.Sap flow responses to seasonal thaw and permafrost degradation in a subarctic boreal peatland[J].Trees,2015,29(1):129-142.
    [40]EWERS B E,OREN R.Analyses of assumptions and errors in the calculation of stomatal conductance from sap flux measurements[J].Tree Physiology,2000,20(9):579-589.
    [41]王华,赵平,蔡锡安,等.马占相思树干液流与光合有效辐射和水汽压亏缺间的时滞效应[J].应用生态学报,2008,19(2):225-230.
    [42]凯旋.重庆近郊马尾松经营林分的水文特征研究[D].贵州:贵州大学,2016.
    [43]鲁小珍.马尾松、栓皮栎生长盛期树干液流的研究[J].安徽农业大学学报,2001,28(4):401-404.
    [44]陈彪,陈立欣,刘清泉,等.半干旱地区城市环境下樟子松蒸腾特征及其对环境因子的响应[J].生态学报,2015,35(15):5076-5084.
    [45]ZHOU G,WEI X,WU Y,et al.Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China[J].Global Change Biology,2011,17(12):3736-3746.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700