基于功能化还原氧化石墨烯和金钯合金纳米粒子的谷氨酸电致化学发光生物传感器研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A stereoselective electrochemiluminescence biosensor based on hemin functionalized reduced graphene oxide nanosheets and Au-Pd alloy nanoparticles
  • 作者:朱姝 ; 王庆红 ; 李真 ; 冉佩瑶 ; 林霞 ; 傅英姿
  • 英文作者:Zhu Shu;Wang Qing-hong;Li Zhen;Ran Pei-yao;Lin Xia;Fu Ying-zi;Lab Teaching & Management Center,Chongqing Medical University;Minkang medical technology (Tianjin) Co.,Ltd.;School of chemistry and chemical engineering,Southwest University;
  • 关键词:电致化学发光生物传感 ; 手性 ; 功能化纳米片层 ; 金钯合金纳米粒子 ; 谷氨酸
  • 英文关键词:electrochemiluminescence biosensor;;chirality;;functionalized nanosheets;;Au-Pd alloy nanoparticles;;glutamate
  • 中文刊名:HXCH
  • 英文刊名:Chemical Sensors
  • 机构:重庆医科大学实验教学管理中心;民康医疗科技(天津)有限公司;西南大学化学化工学院;
  • 出版日期:2018-12-15
  • 出版单位:化学传感器
  • 年:2018
  • 期:v.38;No.152
  • 基金:国家自然科学基金(21272188)
  • 语种:中文;
  • 页:HXCH201804004
  • 页数:10
  • CN:04
  • ISSN:32-1406/TP
  • 分类号:31-40
摘要
该实验设计了基于氯化血红素功能化的还原氧化石墨烯(H-RGO)、金钯合金纳米粒子(AuPdNPs)和L-谷氨酸氧化酶(L-GluOx)的特异性L-谷氨酸(L-Glu)电致化学发光(ECL)生物传感器。实验首先将H-RGO修饰于电极上,再通过电沉积的方式将Au-PdNPs负载于H-RGO表面,L-GluOx通过与AuPdNPs的键合作用实现固载,构建ECL生物传感界面。纳米材料的制备以及传感界面的逐步构建过程通过扫描电子显微镜(SEM)、X-射线能量散射谱(EDS)、紫外可见吸收光谱技术(UV-vis)和电化学技术等测试方法进行了验证。实验发现纳米材料Au-PdNPs和H-RGO二者的协同催化作用极大的改进了传感器的灵敏度。在优化的条件下,L-谷氨酸在1.0×10~(-7)mol/L至5.00×10~(-3)mol/L浓度范围内,ECL信号强度与其浓度对数呈线性相关性。该ECL生物传感器制备简单、响应快速、检测灵敏、稳定性和选择性好,在谷氨酸的检测应用方面具有较大的发展潜力。
        This paper reported a stereoselective electrochemiluminescence(ECL) biosensor based on hemin functionalized reduced graphene oxide nanosheets(H-RGO), Au-Pd alloy nanoparticles(Au-PdNPs) and L-glutamate oxidase(L-GluOx) for the chiral recognition of L-glutamate(L-Glu). It was relatively simple that Au-PdNPs were covered on the H-RGO modified glass carbon electrodes via electrodeposition. The synergistic catalytic effect between H-RGO and Au-PdNPs improved the analytical performances of the ECL biosensor. Amount of L-GluOx can be immobilized on the electrode. The stepwise fabrication of nanomaterials was characterised by scanning electron microscopy(SEM), X-ray energy-dispersive spectroscopy(EDS), UV-vis spectra and electrochemical methods. Under the optimized conditions, the ECL biosensor showed good analytical performances in detection of L-Glu with a wide linear range from 1.0×10~(-7) to 5.0×10~(-3) mol/L, good stability and excellent selectivity. Therefore, this strategy would provide a new idea for selective detecting other targets based on the same principle.
引文
[1]Zhang X,Yin J,Yoon J.Rece nt Advances in Development of Chiral Fluorescent and Colorimetric Sensors[J].Chem.Rev.,2014,114:4918-4959.
    [2]Song G X,Zhou F L,Xu C L,et al.A universal strategy for visual chiral recognition ofα-amino acids with L-tartaric acid-capped gold nanoparticles as colorimetric probes[J].Analyst,2016,141:1257-1265.
    [3]Hynd M,Scott H L,Dodd P R.Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease[J].Neurochem Int.,2004,45:583-595.
    [4]Kanamori K.In vivo N-15 MRS study of glutamate metabolism in the rat brain[J].Anal.Biochem.,2016,529:179-192.
    [5]Alves L M,Castro A C,Oliveira S M,et al.Development of a mimetic system for electrochemical detection of glutamate[J].J Solid State Electrochem.,2016,20(9):2479-2489.
    [6]Kera Y,Aoyama H,Matsumura H,et al.Presence of free D-glutamate and D-aspartate in rat tissues[J].Biochim Biophys Acta,1995,1243:282-286.
    [7]Mangas A,Coveas R,Bodet D,et al.Immunocytochemical visualization of D-glutamate in the rat brian[J].Neuroscience,2007,144:654-664.
    [8]Grant S L,Shulman Y,Tibbo P,et al.Determination of dserine and related neuroactive amino acids in human plasma by high-performance liquid chromatography with fluorimetric detection[J].J Chromatogr B.,2006,844:278-282.
    [9]Parrot S,Sauvinet V,Xavier J M,et al.Capillary electrophoresis combined with microdialysis in the human spinal cord:A new tool for monitoring rapid peroperative changes in amino acid neurotransmitters within the dorsal horn[J].Electrophoresis,2004,25:1511-1517.
    [10]Tsukatani T,Matsumoto K.Sequential fluorometric quantification ofγ-aminobutyrate and L-glutamate using a single line flow-injection system with immobilized-enzyme reactors[J].Anal.Chim.Acta.,2005,546:154-160.
    [11]Acebal C C,Lista A G,Band B S F.Simultaneous determination of flavor enhancers in stock cube samples by using spectrophotometric data and multivariate calibration[J].Food Chem.,2008,106:811-815.
    [12]Chen X,Yin J,Zhang C.Determination of brilliant blue FCF by a novel solid-state ECL quenching sensor of Ru(bpy)32+-poly(sulfosalicylic acid)/GCE[J].Chen,Anal.Sci.,2017,33(10):1123-1128.
    [13]Batra B,Pundir C S.An amperometric glutamate biosensor based on immobilization of glutamate oxidase onto carboxylated multiwalled carbon nanotube gold nanoparticles/chitosan composite film modified Au electrode[J].Biosens.Bioelectron.,2013,47:496-501.
    [14]Ozel R E,Ispas C,Ganesana M,et al.Glutamate oxidase biosensor based on mixed ceria and titania nanoparticles for the detection of glutamate in hypoxic environments[J].Biosens.Bioelectron.,2014,52:397-402.
    [15]Batra B,Yadav M,Pundir C S.L-Glutamate biosensor based on l-glutamate oxidase immobilized onto ZnOnanorods/polypyrrole modified pencil graphite electrode[J].Biochem.Eng.J.,2016,105:428-436.
    [16]Ou X,Fang C,Fan Y,et al.Sandwich-configuration electrochemiluminescence biosensor based on Ag nanocubes-polyamidoamine dendrimer-luminol nanocomposite for Con A detection[J].Sensor.Actua.B-Chem.,2016,228:625-633.
    [17]Xu S J,Liu Y,Wang T H,et al.Highly sensitive electrogenerated chemiluminescence biosensor in profiling protein kinase activity and inhibition using gold nanoparticle as signal transduction probes[J].Anal.Chem.,2010,82:9566-9572.
    [18]Liu S J,Wen Q,Tang L J.Phospholipid-graphene nanoassembly as a fluorescence biosensor for sensitive detection of phospholipase D activity[J].Anal.Chem.,2012,84:5944-5950.
    [19]Ghanbari K,Moloudi M.Flower-like ZnO decorated polyaniline/reduced graphene oxide nanocomposites for simultaneous determination of dopamine and uric acid[J].Anal.Biochem.,2016,512:91-102.
    [20]Yin X,Wang S,Liu X.Aptamer-based colorimetric biosensing of ochratoxin A in fortified white grape wine sample using unmodified gold nanoparticles[J].Anal.Sci.,2017,33(6):659-664.
    [21]Yang Z T,Qian J,Yang X W.A facile label-free colorimetric aptasensor for acetamiprid based on the peroxidase-like activity of hemin-functionalized reduced graphene oxide[J].Biosens.Bioelectron.,2015,65:39-46.
    [22]Jiang X,Chai Y,Yuan R.Electrochemiluminescence of luminol enhanced by the synergetic catalysis of hemin and silver nanoparticles for sensitive protein detection[J].Biosens.Bioelectron.,2014,54:20-26.
    [23]Su Y Y,Lv Y.Graphene and graphene oxides:recent advances in chemiluminescence and electrochemiluminescence[J].RSC Adv.,2014,4:29324-29339.
    [24]Lv J,Li S,Wang A,et al.Monodisperse Au-Pd bimetallic alloyed nanoparticles supported on reduced graphene oxide with enhanced electrocatalytic activity towards oxygen reduction reaction[J].Electrochim.Acta.,2014,136:521-528.
    [25]Guo Y,Wang E,Dong S.Hemin-Graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism[J].ACS Nano.,2011,5:1282-1290.
    [26]Yang J,Deng S Y,Lei J P,et al.Electrochemical synthesis of reduced graphene sheet-AuPd alloy nanoparticle composites for enzymatic biosensing[J].Biosens.Bioelectron.,2011,29:159-166.
    [27]Liu J,Xin X Y,Zhou H.A ternary composite based on graphene,hemin,and gold nanorods with high catalytic activity for the detection of cell-surface glycan expression[J].Chem.Eur.J.,2015,21:1908-1914.
    [28]Xue T,Jiang S,Cheng R.Graphene-supported hemin as a highly active biomimetic oxidation catalyst[J].Angew.Chem.,2012,124:3888-3891.
    [29]Hu C,Yang D P,Wang Z.Improved EIS performance of an electrochemical cytosensor using three-dimensional architecture Au@BSA as sensing layer[J].Anal.Chem.2013,85:5200-5206.
    [30]Hu C Y,Yang D P,Zhu F J,et al.Enzyme-labeled Pt@BSA nanocomposite as a facile electrochemical biosensing interface for sensitive glucose determination[J].ACS Appl.Mater.Interfaces.,2014,6:4170-4178.
    [31]Liang B,Zhang S,Lang Q L,et al.Amperometric L-glutamate biosensor based on bacterial cell-surface displayed glutamate dehydrogenase[J].Anal.Chim.Acta.2015,884:83-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700