用户名: 密码: 验证码:
毛红椿天然群体遗传多样性及取样策略探讨
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Discussion on Genetic Diversity and Sampling Strategy of Natural Toona ciliata var. pubescens Populations
  • 作者:刘军 ; 乔卫阳 ; 邱勇斌 ; 刘学松 ; 陈日红 ; 钟志真 ; 余峰 ; 姜景民
  • 英文作者:LIU Jun;QIAO Wei-yang;QIU Yong-bin;LIU Xue-song;CHEN Ri-hong;ZHONG Zhi-zhen;YU Feng;JIANG Jing-min;Research Institute of Subtropical Forestry, Chinese Academy of Forestry;Kaihua County Forest Farm,Zhejiang Province;Forest Bureau of Jiande City,Zhejiang Province;
  • 关键词:种质资源 ; 保护遗传学 ; 香椿属 ; 遗传变异 ; 基因分化系数
  • 英文关键词:germplasm resources;;conservation genetics;;Toona;;genetic variation;;coefficient of genetic differentiation
  • 中文刊名:LYKX
  • 英文刊名:Forest Research
  • 机构:中国林业科学研究院亚热带林业研究所;浙江省开化县林场;浙江省建德市林业局;
  • 出版日期:2019-02-15
  • 出版单位:林业科学研究
  • 年:2019
  • 期:v.32
  • 基金:国家自然科学基金项目(31570658);; 浙江省农业(林木)新品种选育重大科技专项(2016C02056-3)
  • 语种:中文;
  • 页:LYKX201901025
  • 页数:10
  • CN:01
  • ISSN:11-1221/S
  • 分类号:178-187
摘要
[目的]研究毛红椿天然群体遗传多样性取样策略,为其种质资源收集、保存和遗传多样性保护等提供参考依据。[方法]利用8对微卫星分子标记进行毛红椿天然群体遗传多样性和空间自相关分析,综合制定其天然群体合理取样策略。[结果]毛红椿天然群体等位基因数平均为7.5个,期望杂合度(H_e)和多态性信息指数(PIC)均值分别为0.643 7和0.636 0,基因分化系数(G_(ST))均值为0.290 7。在遗传多样性取样策略方面,提出了根据毛红椿群体基因分化系数来确定取样群体遗传变异所占总变异比例的运算公式为1-(G_(ST))~(n-1),其中,n为取样群体的数量。当取样群体达到4个时,基本上能包括该树种97.5%的遗传变异;同时确定了目标群体的选择方法,应选择与其它群体间基因分化系数均值较大的4个群体,即贵州册亨(CH)、浙江遂昌(SC)、浙江仙居(XJ)和云南师宗(SZ)。通过构建云南宾川(BC)、云南师宗(SZ)和江西宜丰(YF)群体内取样单株数量与基因多样性和等位基因之间的捕获曲线,确定了群体内取样单株数量应达到15个以上;毛红椿天然群体内300~520 m范围内的单株间存在相似关系,超出此范围个体间差别较大,说明在进行群体内单株取样时,单株间距应大于520 m。[结论]取样群体数量、群体间遗传分化系数、群体内单株数量以及单株间距离等影响了毛红椿取样群体的遗传多样性。毛红椿天然群体遗传多样性取样策略为取样群体4个、每个群体最少取样15个单株,单株间距大于520 m。
        [Objective] To study the genetic diversity and sampling strategy of natural Toona ciliata var. pubescens populations and provide references for protecting their genetic diversity as well as collecting and preserving germplasm resources. [Method] Nine natural populations of T. ciliata var. pubescens were collected in its distribution zone. The population genetic diversity, spatial autocorrelation analysis were conducted with 8 microsatellite markers. Simulated sampling methods were used to develop sampling strategy of natural T. ciliata var. pubescens populations. [Result] The results showed that the average number of alleles were 7.5. The mean expected heterozygosity and polymorphism information index(PIC) was 0.643 7 and 0.636 0, respectively. The average coefficient of genetic differentiation(G_(ST)) among populations was 0.290 7. For genetic diversity sampling strategy of T. ciliata var. pubescens, a formula for determining the proportion of genetic diversity was found using G_(ST) and number of populations: 1-(G_(ST))~(n-1), where n means the number of populations. Therefore, when four natural populations, which from Ceheng of Guizhou Province, Suichang of Zhejiang Province, Xianju of Zhejiang Province, and Shizong of Yunnan Province, were selected for conservation and sampling, 97.5% of genetic variation was captured. The population with higher average coefficient of G_(ST) among other populations was chosen. The mean allele number and genetic diversity increased with the increase of sampling individual in Shizong population from Yunnan Province, Binchuan population from Yunnan Province, and Yifeng population from Jiangxi Province by using captured curve. When sampling individual in a population reached 15, total alleles and 99.5% genetic diversity were captured. So more than 15 individuals should be sampled when germplasm of T. ciliata var. pubescens were conserved and sampled. Similarity relation existed among individuals within a distance of 300-520 m. There were great differences among individuals over this distance range. The distance among individuals was beyond 520 m when sampling in natural populations. The number of sampling populations, coefficient of genetic differentiation among populations, sampling individual number in population, and the distance among individuals could affect the genetic diversity of sampling populations. [Conclusion] The number of sampling populations, coefficient of genetic differentiation among populations, sampling individual number in population and the distance among individuals could affect the genetic diversity of sampling populations. It is suggested that the sampling strategy for of natural Toona ciliata var. pubescens populations is 4 sampling populations, at least 15 individuals in each population and more than 520 m intervals among individuals in a population.
引文
[1] 金燕,卢宝荣. 遗传多样性的取样策略[J]. 生物多样性, 2003, 11(2):155-161.
    [2] Gilbert J E,Lewis R V, Wilkinson M J, et al. Developing an appropriate strategy to assess genetic variability in plant germplasm collections[J]. Theoretical and applied genetics, 1999, 98(6-7): 1125-1131.
    [3] 李自超,曾亚文. 云南地方稻种资源核心种质取样方案研究[J]. 中国农业科学,2000, 33(5): 1-7.
    [4] 朱维岳,周桃英,钟明,等. 基于遗传多样性和空间遗传结构的野生大豆居群采样策略[J]. 复旦学报:自然科学版, 2006, 45(3): 321-327.
    [5] Jennifer F C, Affoher M J, Hamrick J L. Developing a sampling strategy for Baptisia aracbnra based on allozyme diversity[J]. Conservation Biology, 1997, 11(5): 1133-1139.
    [6] Malosetti M, Abadie T. Sampling strategy to develop a core collection of Uruguayan maize landraces based on morphological traits[J]. Genetic Resources and Crop Evolution, 2001, 48(4): 381-390.
    [7] 黎裕,王天宇,田松杰,等. 利用分子标记分析遗传多样性时的玉米群体取样策略研究[J]. 植物遗传资源学报,2003,4(4):314-317.
    [8] Mashall D R, Brown A D H. Crop genetic recourses for today and tomorrow[M]. Cambridge: Cambridge University Press, 1975.
    [9] 何田华,杨继,饶广远. 植物居群遗传变异的空间自相关[J]. 植物学通报, 1999,16(6):636-641.
    [10] Sokal R R, Oden N L. Spatial autocorrelation in biology: 1. Methodology[J]. Biological Journal of the Linnean Society,1978, 10(2):199-228.
    [11] 刘军,陈益泰,孙宗修,等. 基于空间自相关分析研究毛红椿天然居群的空间遗传结构[J]. 林业科学,2008,44(6): 45-52.
    [12] 张露,郭联华,杜天真,等. 遮荫和土壤水分对毛红椿幼苗光合特性的影响[J]. 南京林业大学学报:自然科学版,2006,30(5): 63-66.
    [13] 刘军, 孙宗修, 陈益泰, 等. 珍稀濒危树种毛红椿微卫星DNA分离及SSR反应体系优化[J]. 中国生物工程杂志,2006,26(12):50-55.
    [14] 刘军,姜景民,邹军,等. 中国特有濒危树种毛红椿核心和边缘居群的遗传多样性[J]. 植物生态学报,2013, 37 (1):52-60.
    [15] 楼炉焕, 金水虎. 浙江古田山自然保护区珍稀濒危植物区系的研究[J]. 北京林业大学学报,2000,22(5):33-39.
    [16] 张光富. 安徽珍稀濒危植物及其保护[J]. 安徽师范大学学报,2000,23(1):36-39.
    [17] 刘信中, 吴和平. 江西官山自然保护区科学考察与研究[M]. 北京:中国林业出版社, 2005:118-120.
    [18] 刘军,陈益泰,姜景民,等. 毛红椿群体遗传结构的SSR分析[J]. 林业科学研究,2009,22(1): 37-41.
    [19] 刘军,陈益泰,姜景民,等. 毛红椿天然林群落结构特征研究[J]. 林业科学研究,2010,23(1): 93-97.
    [20] 陈小勇. 安徽黄山青冈种群遗传结构的空间自相关分析[J]. 植物生态学报,2001,25 (1): 29-34.
    [21] Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study[J]. Molecular Ecology, 2005,14(8):2611-2620.
    [22] Hamrick J L, Godt M J W, Murawski D A, et al. Correlation between species traits and allozyme diversity: implication for conservation biology[M]// Falk D A, Holsinger K E. Genetics and conservation of rare plants. New York: Oxford University Presss, 1991.
    [23] Liu K, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis[J]. Bioinformatics, 2005, 21(9): 2128-2129.
    [24] Nybom H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants[J]. Molecular Ecology, 2004, 13(5):1143-1155.
    [25] Novick R R, Dick C W, Lemes M R, et al. Genetic structure of Mesoamerican populations of big-leaf mahogany (Swietenia macrophylla) inferred from microsatellite analysis[J]. Molecular Ecology, 2003, 12(11): 2885-2893.
    [26] Dayanandan S, Dole J, Bawa K, et al. Population structure delineated with microsatellite markers in fragmented populations of a tropical tree, Carapa guianensis (Meliaceae) [J]. Molecular Ecology, 1999. 8(10):1585-1592.
    [27] Schoen D J, Brown A H. Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants[J]. Proceedings of the National Academy of Sciences, USA, 1991, 88(10): 4494-4497.
    [28] Ceska J F, Affolter J M, Hamrik J L. Developing a sampling strategy for Baptisia arachnifera based on allozyme diversity[J]. Conservation Biology, 1997, 11(5) : 1133-1139.
    [29] Sj?gren P, Wy?ni P I. Conservation genetics and detection of rare alleles in finite populations[J]. Conservation Biology, 1994, 8(1): 267-270.
    [30] Jin Y, He T H, Lu B R. Fine scale genetic structure in a wild soybean (Glycine soja) population and the implications for conservation[J]. New Phytologist, 2003, 159(2): 513-519.
    [31] Lafontaine G D, Ducousso A, Lefèvre S, et al. Stronger spatial genetic structure in recolonized areas than in refugia in the European beech[J]. Molecular Ecology, 2013, 22(17): 4397-4412.
    [32] Berens D G, Braun C, Griebeler E M, et al. Fine-scale spatial genetic dynamics over the life cycle of the tropical tree Prunus africana[J]. Heredity, 2014,113(5): 401-407.
    [33] Júnior A F M, Carvalho D, Brand?o M M, et al. Spatial genetic structure of Cavanillesia arborea K. Schum.(Malvaceae) in seasonally dry tropical forest: Implications for conservation[J]. Biochemical Systematics and Ecology, 2015, 58:114-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700