果胶多糖水热法降解及其产物体外抗氧化性评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Degradation of Pectic Polysaccharide by Hydrothermal Treatment and Antioxidant Activity in Vitro of the Resulting Products
  • 作者:姜美云 ; 唐硕 ; 王婷 ; 赖晨欢 ; 范一民 ; 勇强
  • 英文作者:JIANG Meiyun;TANG Shuo;WANG Ting;LAI Chenhuan;FAN Yimin;YONG Qiang;Collaborative Innovation Center for Efficient Utilization of Forestry Resources, Nanjing Forestry University;College of Chemical Engineering, Nanjing Forestry University;
  • 关键词:果胶多糖 ; 水热法 ; 降解产物 ; 乙醇分级分离 ; 分子质量 ; 抗氧化活性
  • 英文关键词:pectic polysaccharide;;hydrothermal treatments;;degradation products;;ethanol fractionation;;molecular mass;;antioxidant activity
  • 中文刊名:SPKX
  • 英文刊名:Food Science
  • 机构:南京林业大学林业资源高效加工利用协同创新中心;南京林业大学化学工程学院;
  • 出版日期:2018-10-31 09:58
  • 出版单位:食品科学
  • 年:2019
  • 期:v.40;No.601
  • 基金:“十三五”国家重点研发计划重点专项(2016YFD0600803)
  • 语种:中文;
  • 页:SPKX201912035
  • 页数:7
  • CN:12
  • ISSN:11-2206/TS
  • 分类号:261-267
摘要
采用水热法降解商品果胶多糖,并对其降解产物的抗氧化活性进行评价。结果表明,水热法降解果胶多糖的最优工艺条件为水热处理温度140℃、水热处理时间30 min、pH 6;在此条件下,果胶多糖降解产物得率达46.2%。在此基础上,采用乙醇分级沉淀法对果胶多糖水热处理液进行分离,得到3种不同分子质量范围的果胶多糖降解产物(S1、S2和S3),其重均分子质量分别为13.4、7.5 kDa和5.7 kDa。以商品果胶多糖和3种降解产物为研究对象,进行抗氧化性评价,结果表明,S1组分对1,1-二苯基-2-苦基肼自由基的清除率达49.8%,是商品果胶的4倍;S3组分对超氧阴离子自由基的清除率达58.7%,是商品果胶的10倍。说明水热降解果胶多糖可显著提高其抗氧化活性,为果渣废弃物的高效利用提供理论依据。
        In this work, hydrothermal treatment was carried out on a commercial pectic polysaccharide, and the antioxidant activities of the degradation products were investigated. The results showed that the optimal degradation conditions were found to be treatment at 140 ℃ and pH 6 for 30 min. Under these conditions, the efficiency of degradation was 46.2%.On this basis, the degradation products were fractionated by ethanol precipitation into three fractions(S1, S2 and S3). The weight average molecular masses of S1, S2 and S3 were 13.4, 7.5 and 5.7 kDa, respectively. The antioxidant activities of the pectic polysaccharide and the three degradation products were evaluated. The results showed that the 1,1-diphenyl-2-picrylhydrazyl(DPPH) radical scavenging rate of S1 was 49.8%, which was 4 times as high as that of the pectin, while the superoxide anion scavenging rate of S3 was 58.7%, which was 10 times as high as that of the pectin. These results indicated that the hydrothermal degradation of pectic polysaccharides could significantly improve its antioxidant activity. This study provides a theoretical basis for the efficient utilization of pomace wastes.
引文
[1]VORAGEN A G J,COENEN G J,VERHOEF R P,et al.Pectin,a versatile polysaccharide present in plant cell walls[J].Structural Chemistry,2009,20(2):263-275.DOI:10.1007/s11224-009-9442-z.
    [2]马丽苹,焦昆鹏,罗磊,等.改性苹果果胶性质及抗氧化活性[J].食品科学,2017,38(23):121-128.DOI:10.7506/spkx1002-6630-201723020.
    [3]GóMEZ B,GULLóN B,Yá?EZ R,et al.Prebiotic potential of pectins and pectic oligosaccharides derived from lemon peel wastes and sugar beet pulp:a comparative evaluation[J].Journal of Functional Foods,2016,20:108-121.DOI:10.1016/j.jff.2015.10.029.
    [4]LIN L,WANG P,DU Z,et al.Structural elucidation of a pectin from flowers of Lonicera japonica and its antipancreatic cancer activity[J].International Journal of Biological Macromolecules,2016,88:130-137.DOI:10.1016/j.ijbiomac.2016.03.025.
    [5]DAS S,NG K Y.Colon-specific delivery of resveratrol:optimization of multi-particulate calcium-pectinate carrier[J].International Journal of Pharmaceutics,2010,385(1):20-28.DOI:10.1016/j.ijpharm.2009.10.016.
    [6]TAN H,CHEN W,LIU Q,et al.Pectin oligosaccharides ameliorate colon cancer by regulating oxidative stress-and inflammationactivated signaling pathways[J].Frontiers in Immunology,2018,9(6):1-6.DOI:10.3389/fimmu.2018.01504.
    [7]ELST K,BABBAR N,ROY S V,et al.Continuous production of pectic oligosaccharides from sugar beet pulp in a cross flow continuous enzyme membrane reactor[J].Bioprocess&Biosystems Engineering,2018,41(11):1-13.DOI:10.1007/s00449-018-1995-z.
    [8]MANDALARI G,BENNETT R N,KIRBY A R,et al.Enzymatic hydrolysis of flavonoids and pectic oligosaccharides from bergamot(Citrus bergamia Risso)peel[J].Journal of Agricultural&Food Chemistry,2006,54(21):8307-8313.DOI:10.1021/jf0615799.
    [9]HAO M,YUAN X,CHENG H,et al.Comparative studies on the antitumor activities of high temperature-and pH-modified citrus pectins[J].Food&Function,2013,4(6):960-971.DOI:10.1039/c3fo30350k.
    [10]KüHNEL S,HINZ S W A,POUVREAU L,et al.Chrysosporium lucknowense arabinohydrolases effectively degrade sugar beet arabinan[J].Bioresource Technology,2010,101(21):8300-8307.DOI:10.1016/j.biortech.2010.05.070.
    [11]ZHANG H,ZHOU X,XU Y,et al.Production of xylooligosaccharides from waste xylan,obtained from viscose fiber processing,by selective hydrolysis using concentrated acetic acid[J].Journal of Wood Chemistry&Technology,2017,37(1):1-9.DOI:10.1080/02773813.2016.1214154.
    [12]MARTíNEZ M,GULLóN B,SCHOLS H A,et al.Assessment of the production of oligomeric compounds from sugar beet pulp[J].Industrial&Engineering Chemistry Research,2009,48(10):4681-4687.DOI:10.1021/ie8017753.
    [13]WU X,HUANG C,ZHAI S,et al.Improving enzymatic hydrolysis efficiency of wheat straw through sequential autohydrolysis and alkaline post-extraction[J].Bioresource Technology,2017,251:374-380.DOI:10.1016/j.biortech.2017.12.066.
    [14]GARNA H,MABON N,NOTT K,et al.Kinetic of the hydrolysis of pectin galacturonic acid chains and quantification by ionic chromatography[J].Food Chemistry,2006,96(3):477-484.DOI:10.1016/j.foodchem.2005.03.002.
    [15]MARTíNEZ M,GULLóN B,Yá?EZ R,et al.Kinetic assessment on the autohydrolysis of pectin-rich by-products[J].Chemical Engineering Journal,2010,162(2):480-486.DOI:10.1016/j.cej.2010.05.048.
    [16]GARROTE G,Yá?EZ R,AND J L A,et al.Coproduction of oligosaccharides and glucose from corncobs by hydrothermal processing and enzymatic hydrolysis[J].Industrial&Engineering Chemistry Research,2007,47(4):1336-1345.DOI:10.1021/ie071201f.
    [17]MIYAZAWA A T,FUNAZUKURI T.Hydrothermal production of mono(galacturonic acid)and the oligomers from poly(galacturonic acid)with water under pressures[J].Industrial&Engineering Chemistry Research,2004,43(10):1251-1254.DOI:10.1021/ie0202672.
    [18]SARAVANA P S,CHO Y N,PATIL M P,et al.Hydrothermal degradation of seaweed polysaccharide:characterization and biological activities[J].Food Chemistry,2018,268:179-187.DOI:10.1016/j.foodchem.2018.06.077.
    [19]FISCHER M,AMADòR.Changes in the pectic substances of apples during development and postharvest ripening.Part 1:analysis of the alcohol-insoluble residue[J].Carbohydrate Polymers,1994,25(3):161-166.DOI:10.1016/0144-8617(94)90200-3.
    [20]GRASSINO A N,BRN?I?M,VIKI?-TOPI?D,et al.Ultrasound assisted extraction and characterization of pectin from tomato waste[J].Food Chemistry,2016,198:93-100.DOI:10.1016/j.foodchem.2015.11.095.
    [21]JIA D,ZHANG J,LAN R,et al.A simple preparative method for isolation and purification of polysaccharides from mulberry(Morus alba L.)leaves[J].International Journal of Food Science&Technology,2013,48(6):1275-1281.DOI:10.1111/ijfs.12087.
    [22]TANG S,JIANG M Y,HUANG C X,et al.Characterization of arabinogalactans from Larix principis-rupprechtii and their effects on NO production by macrophages[J].Carbohydrate Polymers,2018,200:408-415.DOI:10.1016/j.carbpol.2018.08.027.
    [23]KATRIEN S,COURTIN C M,CJE L G,et al.Large-scale production and characterisation of wheat bran arabinoxylooligosaccharides[J].Journal of the Science of Food&Agriculture,2010,86(11):1722-1731.DOI:10.1002/jsfa.2470.
    [24]IMJONGJAIRAK S,RATANAKHANOKCHAI K,LAOHAKUNJITN,et al.Biochemical characteristics and antioxidant activity of crude and purified sulfated polysaccharides from Gracilaria fisheri[J].Bioscience Biotechnology&Biochemistry,2016,80(3):524-532.DOI:10.1080/09168451.2015.1101334.
    [25]WANG B S,LI B S,ZENG Q X,et al.Antioxidant and free radical scavenging activities of pigments extracted from molasses alcohol wastewater[J].Food Chemistry,2008,107(3):1198-1204.DOI:10.1016/j.foodchem.2007.09.049.
    [26]WANG X,LüX.Characterization of pectic polysaccharides extracted from apple pomace by hot-compressed water[J].Carbohydrate Polymers,2014,102:174-184.DOI:10.1016/j.carbpol.2013.11.012.
    [27]WIKIERA A,MIKA M,STODOLAK B.Development of complete hydrolysis of pectins from apple pomace[J].Food Chemistry,2015,172:675-680.DOI:10.1016/j.foodchem.2014.09.132.
    [28]MARTíNEZ M,Yá?EZ R,ALONSóJ L,et al.Chemical production of pectic oligosaccharides from orange peel wastes[J].Industrial&Engineering Chemistry Research,2010,49(18):1275-1281.DOI:10.1021/ie101066m.
    [29]李健军.柑橘果胶多糖可控性降解和寡糖片段的分离分析及其活性研究[D].西安:西北大学,2011:77-78.
    [30]郝杰,查学强,鲍素华,等.霍山石斛不同分子量多糖体外抗氧化研究[J].食品科学,2009,30(15):94-98.DOI:10.3321/j.issn:1002-6630.2009.15.021.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700