ZrS_2量子点:制备、结构及光学特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:ZrS_2 quantum dots:Preparation, structure, and optical properties
  • 作者:周亮亮 ; 吴宏博 ; 李学铭 ; 唐利斌 ; 郭伟 ; 梁晶
  • 英文作者:Zhou Liang-Liang;Wu Hong-Bo;Li Xue-Ming;Tang Li-Bin;Guo Wei;Liang Jing;Key Laboratory of Advanced Technique and Preparation for Renewable Energy Materials, Ministry of Education,Yunnan Normal University;School of Physics, Beijing Institute of Technology;Kunming Institute of Physics;
  • 关键词:过渡金属硫族化合物 ; 二硫化锆 ; 超声剥离法 ; 量子点
  • 英文关键词:transition-metal dichalcogenides;;ZrS_2;;ultrasonic exfoliation method;;quantum dots
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:云南师范大学可再生能源材料先进技术与制备教育部重点实验室;北京理工大学物理学院;昆明物理研究所;
  • 出版日期:2019-07-12 14:20
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:51462037,61106098);; 云南省应用基础研究重点项目(批准号:2012FA003)资助的课题~~
  • 语种:中文;
  • 页:WLXB201914033
  • 页数:7
  • CN:14
  • ISSN:11-1958/O4
  • 分类号:381-387
摘要
近年来,由于独特的电子结构及优异的光电特性,过渡金属硫族化合物(TMDs)吸引了研究者的广泛关注.本文采用"自上而下"的超声剥离法成功制备了尺寸约为3.1 nm的六方结构单分散1T相二硫化锆量子点(1T-ZrS_2 QDs).采用紫外-可见吸光度及光致发光方法,系统研究了1T-ZrS_2 QDs的光学特性.研究发现:1T-ZrS_2 QDs在283 nm和336 nm处存在特征吸收峰,并且斯托克斯(Stokes)位移了约130 nm,荧光量子产率高达53.3%.研究结果表明:1T-ZrS_2 QDs具有优良的荧光性能及独特的光学性质,使其在光电探测、多色发光等器件中有潜在的重要应用价值.
        In recent years, transition metal chalcogenides(TMDs) have attracted extensive attention of researchers due to their unique electronic structure and excellent photoelectric properties. In this paper, hexagonal structure1 T-ZrS_2 quantum dots(QDs) having a monodisperse grain size of around 3.1 nm is prepared by the ultrasonic exfoliation method. The preparation includes the following steps: ZrS_2 powder is ground, followed by ultrasonic exfoliation in 1-methyl-2-pyrrolidone(NMP), and 1 T-ZrS_2 QDs are collected after centrifugation. The structure,morphology and optical properties of the QDs are studied in detail. The structure, morphology, size distribution, and elemental composition of 1 T-ZrS_2 QDs are studied by using X-ray diffractometer(XRD),transmission electron microscopy(TEM), atomic force microscopy(AFM), and scanning electron microscopy(SEM). The chemical bonds of 1 T-ZrS_2 QDs are characterized by X-ray photoelectron microscopy(XPS) and Fourier transform infrared spectrometer(FTIR). The TEM and AFM results show that the 1 T-ZrS_2 QDs are spherical in shape with uniform size distribution. The sizes of the 1 T-ZrS_2 QDs follow a Gaussian fitted distribution with an average diameter of WC = 3.1 nm and the FWHM is 1.3 nm. The XRD diffraction pattern of 1 T-ZrS_2 QDs show wide dispersed diffraction peaks, which is the characteristic of QDs. The diffraction peak at 2 q = 32.3°(d = 0.278 nm) corresponds to the(101) crystal plane, and the weak diffraction peak at 2 q =56.8°(d = 0.167 nm) belongs to the(103) crystal plane. The grain size is also calculated by using the DebyeScherrer formula, and the calculated value(2.9 nm) is consistent with the result of TEM(3.1 nm). Two Raman vibration modes(E1 g and A_(1g)) are observed. The E1 g(507.3 cm–1) and A_(1g)(520.1 cm~(–1)) modes relate to the inplane and out-of-plane vibration respectively. The Raman intensity of the A_(1g) vibration mode is stronger than that of E1 g. The UV-Vis and photoluminescence(PL and PLE) characterizations exhibit that the 1 T-ZrS_2 QDs have two UV absorption peaks at 283 nm and 336 nm, respectively. The Stokes shift is ~130 nm, the fluorescence quantum yield reaches up to 53.3%. The results show that the 1 T-ZrS_2 QDs have the excellent fluorescence performance and unique optical properties, which make the 1 T-ZrS_2 QDs an important material for developing photodetectors, multi-color luminescent devices, and other devices.
引文
[1]Huang J W,Luo L Q,Jin B,Chu S J,Peng R F 2017 Acta Phys.Sin.66 137801(in Chinese)[黄静雯,罗利琼,金波,楚士晋,彭汝芳2017物理学报66 137801]
    [2]Duan X,Wang C,Pan A,Yu R,Duan X 2015 Chem.Soc.Rev.44 8859
    [3]Zhen Y X,Yang M,Zhang H,Fu G S,Wang J L,Wang S F,Wang R N 2017 Sci.Bull. 62 1530
    [4]Zhao X,Wang T,Wei S,Dai X,Yang L 2017 J.Alloys Compd.695 2048
    [5]Fiori G,Bonaccorso F,Iannaccone G,Palacios T,Neumaier D,Seabaugh A 2014 Nat.Nanotechnol. 9 768
    [6]Huang Z S,Zhang W X,Zhang W L,Li Y 2014 Nano Res.71731
    [7]Li L,Wang H,Fang X 2011 Energy Environ.Sci.4 2586
    [8]Li S,Wang C,Qiu H 2015 Int.J.Hydrogen Energy 40 15503
    [9]Wen Y,Zhu Y,Zhang S 2015 RSC Adv.5 66082
    [10]Si Y,Wu H Y,Yang H M 2016 Nanoscale Res.Lett. 11 495
    [11]Li L,Fang X,Zhai T 2010 Adv.Mater.22 4151
    [12]Zhang H Z,Li J T,Lu W G,Yang H F,Tang C C,Gu C Z2017 Acta Phys.Sin.66 217301(in Chinese)[张慧珍,李金涛,吕文刚,杨海方,唐成春,顾长志2017物理学报66 217301]
    [13]Zhang X,Cheng H,Zhang H 2017 Adv.Mater.29 1701704
    [14]Tan C,Cao X,Wu X J,He Q,Yang J,Zhang X,Sindoro M2017 Chem.Rev.117 6225
    [15]Yang W,Zhang B,Ding N 2016 Ultrason.Sonochem.30 103
    [16]Kocisova E,Petr M,Sipova H,Kylian O,Prochazka M 2017Phys.Chem.Chem.Phys.19 388
    [17]Esro M,Vourlias G,Somerton C,Milne W I,Adamopoulos G2015 Adv.Funct.Mater.25 134
    [18]Wang Z,Zhao B,Li J 2017 Color Res.Appl. 42 10
    [19]Gentili P L 2014 Dyes Pigments 110 235
    [20]Yu X,Prevot M S,Guijarro N 2015 Nat. Comm.6 7596
    [21]Qian F L,Li X M,Tang L B,Lai S K,Lu C Y,Lau S P 2016AIP Adv.6 075116

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700