养殖海带、裙带菜根部附着力初步研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Holdfast Adhesion of Cultured Kelp Saccharina japonica and Sea Mustard Undaria pinnatifida
  • 作者:秦松 ; 田涛 ; 杨军 ; 吴忠鑫 ; 刘永虎 ; 陈勇
  • 英文作者:QIN Song;TIAN Tao;YANG Jun;WU Zhongxin;LIU Yonghu;CHEN Yong;Center for Marine Ranching Engineering Science Research of Liaoning Province,Dalian Ocean University;Marine Aquaculture Research Institute of Zhejiang Province;
  • 关键词:海带 ; 裙带菜 ; 相对附着系数 ; 水流速度
  • 英文关键词:Saccharina japonica;;Undaria pinnatifida;;adhesion index;;flow speed
  • 中文刊名:CHAN
  • 英文刊名:Fisheries Science
  • 机构:大连海洋大学辽宁省海洋牧场工程技术研究中心;浙江省海洋水产养殖研究所;
  • 出版日期:2019-01-18 15:45
  • 出版单位:水产科学
  • 年:2019
  • 期:v.38
  • 基金:国家科技支撑计划项目(2013BAD23B01,2015BAD13B05);; 辽宁省科学技术计划项目(2015103021);; 辽宁省农业领域青年科技创新人才培养计划项目(2014006)
  • 语种:中文;
  • 页:CHAN201901005
  • 页数:6
  • CN:01
  • ISSN:21-1110/S
  • 分类号:37-42
摘要
选取我国北方沿海大型藻类主要养殖品种海带、裙带菜,通过水流冲击法及拉力计测试法,测量两种藻类不同生长阶段根部附着力大小,并初步分析其附着能力。试验结果显示,海带、裙带菜苗绳上幼苗脱落率与水流速度有明显的对数关系,海带与裙带菜之间差异显著(P<0.05)。海带幼苗脱落率(y)与水流速度(x)关系式为y=0.2384lnx-0.5556,相对附着系数为0.0329;裙带菜苗绳上幼苗脱落率与水流速度关系式为y=0.2795lnx-0.769,相对附着系数为0.0419,同规格裙带菜幼苗附着能力强于海带。成体海带、裙带菜根部最大承受力与藻体本身全长及湿质量等各项指标均显著相关,海带、裙带菜根部附着力随着藻体规格的增长而增大,同规格裙带菜附着力显著高于海带(P<0.05)。根据试验结果,建议在幼苗时期尽量减缓水流速度,流速<20cm/s,以避免幼苗大量死亡,当幼苗生长至一定规格后,适当增加水流速度,以保证藻体良好发育。
        The holdfast adhesive ability and adhesive force were measured in principally cultured kelp Saccharina japonicaand sea mustard Undaria pinnatifida with body length of 1—10mm in northern coast in China during different growth stages by means of water blast method and tensiometer test method.The results showed that there was a signficant logarithmic relationship between expulsion rate of the seedlings of S.japonicaand U.pinnatifidaand flow velocity,with significant difference between kelp and sea mustard(P<0.05).The relationship formula between the expulsion rate(y)of the kelp seedlings and the flow velocity(x)was expressed as y=0.2384lnx-0.5556,with a relative adhesive index of 0.0329.The relationship formula between the expulsion rate of the seedlings of sea mustard and the flow velocity was described as y=0.2795lnx-0.769,with a relative adhesive index of 0.0419,stronger adhesive ability in sea mustard seedlings than that in kelp.The maximal bearable force of the holdfast of adult kelp and sea mustard was shown to be closely related to all indices including the length and wet weight of frond,and their adhesive force was increased with the increase in size of the frond,with significant higher adhesive force in sea mustard than in the kelp within the same size(P<0.05).In conclusion,it is suggested that the flow velocity be reduced to less than 20cm/s in the seedling period to avoid a large number of dead seedlings,and increased properly to ensure the good development of the macroalgae as they grow to a certain size.
引文
[1]曾呈奎,张峻甫.中国北部的经济海藻[J].山东大学学报:理学版,1952(1):57-82.
    [2]丛瑶,宋悦凡,汪秋宽.褐藻多糖硫酸酯降解及其产物活性研究进展[J].水产科学,2017,36(5):674-682.
    [3]王文亮,王守经,宋康,等.中国海带资源的功能及其开发利用研究[J].农业工程技术:农产品加工业,2008(4):40-41.
    [4]苌钊.裙带菜的综合利用研究[D].青岛:中国海洋大学,2013.
    [5]唐启升.碳汇渔业与又好又快发展现代渔业[J].江西水产科技,2011(2):5-7.
    [6]权伟,应苗苗,康华靖,等.中国近海海藻养殖及碳汇强度估算[J].水产学报,2014,38(4):510-515.
    [7]孟范平,刘宇,王震宇.海水污染植物修复的研究与应用[J].海洋环境科学,2009,28(5):588-593.
    [8]毛玉泽,蒋增杰,方建光.基于大型藻类的网箱养殖生物修复技术[J].中国科技成果,2012(10):21-24.
    [9] Mehta S K,Gaur J P.Use of algae for removing heavy metal ions from wastewater:progress and prospects[J].Critical Reviews in Biotechnology,2005,25(3):113-152.
    [10]Bowes G.Facing the inevitable:plants and increasing atmospheric CO2[J]Ann Rev Plant Physiol Plant Mol Biol,1993,44(1):309-332.
    [11]严立文,黄海军,陈纪涛,等.我国近海藻类养殖的碳汇强度估算[J].海洋科学进展,2011,29(4):537-545.
    [12]Pavoni B,Caliceti M,Sperni L,et al.Organic micropollutants(PAHs,PCBs,pesticides)in seaweeds of the lagoon of Venice[J].Oceanologica Acta,2003,26(5/6):585-596.
    [13]Mata T M,Martins A A,Caetano N S.Microalgae for biodiesel production and other applications:a review[J].Renewable&Sustainable Energy Reviews,2010,14(1):217-232.
    [14]Brennan L,Owende P.Biofuels from microalgae—a review of technologies for production,processing,and extractions of biofuels and co-products[J].Renewable&Sustainable Energy Reviews,2010,14(2):217-232.
    [15]Sydney E B,Sturm W,Carvalho J C D,et al.Potential carbon dioxide fixation by industrially important microalgae[J].Bioresource Technology,2010,101(15):5892-5896.
    [16]陈玮,刘启顺,李曙光,等.微藻多糖生物活性研究进展[J].中国海洋药物,2012,31(3):55-60.
    [17]李基磐.中国海带养殖业回顾与展望[J].中国渔业经济,2010,28(1):12-15.
    [18]金振辉,刘岩,张静,等.中国海带养殖现状与发展趋势[J].海洋湖沼通报,2009,27(1):141-150.
    [19]农业部渔业渔政管理局.中国渔业统计年鉴[M].北京:中国农业出版社,2014.
    [20]逄少军,吴超元.我国裙带菜人工育苗技术的现状和展望[J].海洋科学,1994,18(6):25-27.
    [21]汤学军.我国海藻产业的现状分析和发展对策[J].江西水产科技,2003(2):8-12.
    [22]曹淑青,李保全.我国裙带菜人工育苗技术研究进展[J].河北渔业,2015(6):64-67.
    [23]肖德彩,朱英庆.裙带菜优质高产相关因素的探讨[J].水产科学,2000,19(5):40-42.
    [24]卢书长,刘殿秀.水混流急海域开发海带养殖技术研究[J].齐鲁渔业,1994(4):4-6.
    [25]张起信,李洪影.裙带菜海上育苗直接养成技术[J].中国水产,1988,15(11):32-32.
    [26]李建军,广树起,赵升志,等.裙带菜全人工苗缠筏身水平式养殖试验[J].水产科学,2000,19(5):20-23.
    [27]Kuhl M,Cohen Y,Dalsgaard T,et al.Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2,pH and light[J].Marine Ecology Progress,1995,117(1/3):159-172.
    [28]孟伟杰,王萍,桂福坤,等.藻体部位、藻质量、碳源、水流对铁钉菜和羊栖菜营养盐吸收的影响[J].海洋与湖沼,2014,45(3):663-668.
    [29]张定民,缪国荣,杨清明.沿岸流与海带养殖关系的研究:Ⅱ流速对海带生长的影响[J].山东海洋学院学报,1986,12(4):180-186.
    [30]张泽华,黄海军,刘艳霞,等.浅海筏式养殖对周边海域潮流和悬浮体特征影响研究[J].海洋科学进展,2016,34(1):37-49.
    [31]单体锋.海带、裙带菜和羊栖菜的遗传分析[D].青岛:中国科学院研究生院海洋研究所,2009.
    [32]李静.海带、裙带菜和铜藻的基础繁育生物学研究及产业化应用[D].北京:中国科学院大学,2015.
    [33]张皓宇.獐子岛人工鱼礁区裙带菜附着动物群落结构的研究[D].大连:大连海洋大学,2016.
    [34]单体锋,李静,逄少军.我国裙带菜育苗和育种技术的回顾和展望[J].中国农业科技导报,2016,18(1):164-170.
    [35]Guilbeau B P,Harry F P,Gambrell R P,et al.Algae attachment on carbonated cements in fresh and brackish waters—preliminary results[J].Ecological Engineering,2003,20(4):309-319.
    [36]于沛民.人工藻礁的选型与藻类附着效果的初步研究[D].青岛:中国海洋大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700