虹鳟和硬头鳟早期幼鱼渗透生理及能量平衡的比较研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparative Studies of Osmophysiology and Energy Budget Between Juvenile Rainbow(Oncorhynchus mykiss)and Steelhead Trout(O. mykiss)
  • 作者:熊莹槐 ; 杨静雯 ; 董双林 ; 王芳 ; 王鑫 ; 周演根
  • 英文作者:XIONG Ying-Huai;YANG Jing-Wen;DONG Shuang-Lin;WANG Fang;WANG Xin;ZHOU Yan-Gen;The Key Laboratory of Mariculture(Ocean University of China),Ministry of Education;Function Laboratory for Marine Fisheries Science and Food Production Processes,Qingdao National Laboratory for Marine Science and Technology;
  • 关键词:虹鳟 ; 硬头鳟 ; 盐度 ; 渗透压 ; 血清离子 ; ATP酶 ; 能量平衡
  • 英文关键词:rainbow trout;;steelhead trout;;salinity;;serum osmolality;;serum ion;;ATP enzyme;;energy budget
  • 中文刊名:QDHY
  • 英文刊名:Periodical of Ocean University of China
  • 机构:海水养殖教育部重点实验室(中国海洋大学);青岛海洋科学与技术国家实验室海洋渔业科学与食物产出过程功能实验室;
  • 出版日期:2018-12-25 08:58
  • 出版单位:中国海洋大学学报(自然科学版)
  • 年:2019
  • 期:v.49;No.292
  • 基金:国家自然科学基金项目(31572634;31702364);; 山东省重点研发项目(2016CYJS04A01;2017CXGC0106)资助~~
  • 语种:中文;
  • 页:QDHY201903006
  • 页数:10
  • CN:03
  • ISSN:37-1414/P
  • 分类号:50-59
摘要
在0、5、10、15、20、25和30这7个盐度下比较研究了初始体重分别为(3.55±0.03)g陆封型虹鳟(Oncorhynchus mykiss)和(3.57±0.07)g溯河型硬头鳟(Oncorhynchus mykiss)的渗透压生理及能量平衡。40天的研究显示:(1)随盐度的升高虹鳟和硬头鳟的血清渗透压和离子浓度均升高,且S30组的数值显著高于其余各组(P<0.05);在S15、S20、S25和S30组,虹鳟血清渗透压、离子浓度均显著高于硬头鳟(P<0.05)。(2)虹鳟和硬头鳟分别在S5和S10组的Na+-K+-ATP酶(NKA)和Ca~(2+)-Mg~(2+)-ATP酶(CMA)活性最低;在S10、S15、S20、S25和S30组,虹鳟的NKA和CMA均显著高于硬头鳟(P<0.05)。(3)虹鳟和硬头鳟分别在S5和S10组的肌肉和鳃组织ATP含量最高;在S10、S15、S20和S25组,硬头鳟ATP均显著高于虹鳟(P<0.05)。(4)虹鳟和硬头鳟分别在S5和S10组的肌肉和鳃组织AMP/ATP和ADP/ATP最低,在S10、S15、S20、S25和S30组,虹鳟AMP/ATP和ADP/ATP均显著高于硬头鳟(P<0.05)。研究结果表明,3.6g左右硬头鳟渗透调节能力强于虹鳟,经过逐渐驯化它们最适生长盐度分别为10和5。
        Effects of salinity on osmophysiology and energy budget of juvenile landlocked rainbow trout and anadromous steelhead trout were studied.Seven salinity treatments were 0,5,10,15,20,25,and30.Initial size of rainbow and steelhead trout was 3.6 g.After a 40-day trial,serum osmolality and ion of rainbow and steelhead trout tended to increase with salinity increase,serum osmolality and ion in the S30 treatment were significantly higher than that of other treatments(P<0.05).In the S15,S20,S25 and S30 treatments,serum osmolality and ion of rainbow trout were significantly higher than those of steelhead trout(P<0.05).The activity of Na+-K+-ATP(NKA)and Ca~(2+)-Mg~(2+)-ATP(CMA)of rainbow and steelhead trout gained the minimum in S5 and S10 treatments,respectively.In the S10,S15,S20,S25 and S30 treatments,the activities of NKA and CMA of rainbow trout were significantly higher than those of steelhead trout(P<0.05).The ATP content of rainbow and steelhead trout muscle and gill was the highest in S5 and S10 treatments,respectively.In the S10,S15,S20,S25 and S30 treatments,the ATP content of steelhead trout was significantly higher than that of rainbow trout(P<0.05).The AMP/ATP and ADP/ATP of rainbow and steelhead trout muscle and gill gained the minimum in S5 and S10 treatments,respectively.In the S10,S15,S20,S25 and S30 treatments,the AMP/ATP and ADP/ATP of rainbow trout were significantly higher than those of steelhead trout(P<0.05).The results indicated that the salinity adaptation of the juvenile anadromous steelhead trout was slightly higher than that of the juvenile landlocked rainbow trout,and salinities of 10 and 5 were suitable for the juvenile culture of the fishes,respectively.
引文
[1]McCormick S D.Smolt physiology and endocrinology[J].Fish Physiology,2012,32:199-251.
    [2] Iwata M.Downstream migratory behavior of salmonids and its relationship with cortisol and thyroid hormones:A review[J].Aquaculture,1995,135(1):131-139.
    [3] Melo M C,Andersson E,Fjelldal P G,et al.Salinity and photoperiod modulate pubertal development in Atlantic salmon(Salmo salar)[J].Journal of Endocrinology,2014,220(3):319-332.
    [4] Lavado R,Aparicio-Fabre R,Schlenk D.Effects of salinity acclimation on the expression and activity of Phase I enzymes(CYP450and FMOs)in coho salmon(Oncorhynchus kisutch)[J].Fish Physiology and Biochemistry,2014,40(1):267-278.
    [5] Stewart H A,Noakes D L,Cogliati K M,et al.Salinity effects on plasma ion levels,cortisol,and osmolality in Chinook salmon following lethal sampling[J].Comparative Biochemistry and Physiology Part A:Molecular&Integrative Physiology,2016,192:38-43.
    [6] Johnston C,Saunders R.Parr-smolt transformation of yearling Atlantic salmon(Salmo salar)at several rearing temperatures[J].Canadian Journal of Fisheries and Aquatic Sciences,1981,38(10):1189-1198.
    [7] Johnston C E,Cheverie J C.Comparative analysis of ionoregulation in rainbow trout(Salmo gairdneri)of different sizes following rapid and slow salinity adaptation[J].Canadian Journal of Fisheries&Aquatic Sciences,1985,42(12):1994-2003.
    [8] Johnsson J,Clarke W.Development of seawater adaptation in juvenile steelhead trout(Salmo gairdneri)and domesticated rainbow trout(Salmo gairdneri)-effects of size,temperature and photoperiod[J].Aquaculture,1988,71(3):247-263.
    [9] Landless P J.Acclimation of rainbow trout to sea water[J].Aquaculture,1976,7(2):173-179.
    [10] McCormick S D,Shrimpton J M,Moriyama S,et al.Differential hormonal responses of Atlantic salmon parr and smolt to increased daylength:A possible developmental basis for smolting[J].Aquaculture,2007,273(2-3):337-344.
    [11] Duncan N J,Auchinachie N,Robertson D,et al.Growth,maturation and survival of out-of-season 0+and 1+Atlantic salmon(Salmo salar)smolts[J].Aquaculture,1998,168(1):325-339.
    [12] Duston J.Effect of salinity on survival and growth of Atlantic salmon(Salmo salar)parr and smolts[J].Aquaculture,1994,121(1-3):115-124.
    [13] Sedgwick S D.Rainbow trout farming in Scotland,farming trout in salt water[J].Scotland Agriculture,1970,5(2):6-12.
    [14]韩立民,郭永超,董双林.开发黄海冷水团建立国家离岸养殖试验区的研究[J].太平洋学报,2016,24(5):79-85.Han L M,Guo Y C,Dong S L.Research on establishing a national offshore aquaculture experimental one based on the development of the Yellow Sea cold water mass[J].Pacific Journal,2016,24(5):79-85.
    [15]董双林.论我国水产养殖业生态集约化发展[J].中国渔业经济,2015,33(5):4-9.Dong S L.On ecological intensification of aquaculture systems in China[J].Chinese Fisheries Economics,2015,33(5):4-9.
    [16] Evans D H,Piermarini P M,Choe K P.The multifunctional fish gill:Dominant site of gas exchange,osmoregulation,acid-base regulation,and excretion of nitrogen waste[J].Physiological Reviews,2005,85(1):97-177.
    [17] Boeuf G,Payan P.How should salinity influence fish growth?[J].Comparative Biochemistry and Physiology Part C:Toxicology&Pharmacology,2001,130(4):411-423.
    [18] Mccormick S D.Effects of growth hormone and insulin-like growth factor I on salinity tolerance and gill Na+,K+-ATPase in Atlantic salmon(Salmo salar):Interaction with cortisol[J].General&Comparative Endocrinology,1996,101(1):3-11.
    [19]张春晓,周磊,叶继丹,等.急性盐度胁迫对摄食不同镁水平饲料鲈血清渗透压和离子水平以及鳃丝ATP酶活力的影响[J].水产学报,2012,36(9):1425-1434.Zhang C X,Lei Z,Ye J D,et al.Effects of acute salinity stress on the serum osmolality,serum ion concentrations,and ATPase activity in gill filaments of Japanese seabass(Lateolabrax japonicus)fed with diets containing different magnesium levels[J].Journal of Fisheries of China,2012,36(9):1425.
    [20]Havird J C,Henry R P,Wilson A E.Altered expression of Na+/K+-ATPase and other osmoregulatory genes in the gills of euryhaline animals in response to salinity transfer:A meta-analysis of 59quantitative PCR studies over 10years[J].Comparative Biochemistry&Physiology Part D Genomics&Proteomics,2013,8(2):131.
    [21] Evans A N,Lambert F N.Na+/K+-ATPaseα1mRNA expression in the gill and rectal gland of the Atlantic stingray,Dasyatis sabina,following acclimation to increased salinity[J].Bmc Research Notes,2015,8(1):219.
    [22] Huang C Y,Chao P L,Lin H C.Na+/K+-ATPase and vacuolar-type H+-ATPase in the gills of the aquatic air-breathing fish Trichogaster microlepis in response to salinity variation[J].Comparative Biochemistry&Physiology Part A Molecular&Integrative Physiology,2010,155(3):309-318.
    [23] Hwang P P,Lee T H.New insights into fish ion regulation and mitochondrion-rich cells[J].Comparative Biochemistry&Physiology Part A Molecular&Integrative Physiology,2007,148(3):479-497.
    [24] Hirose S,Kaneko T,Naito N,et al.Molecular biology of major components of chloride cells[J].Comparative Biochemistry&Physiology Part B Biochemistry&Molecular Biology,2003,136(4):593-620.
    [25] Nordlie F G.The influence of environmental salinity on respiratory oxygen demands in the euryhaline teleost,ambassis interrupta bleeker[J].Comparative Biochemistry&Physiology Part A Physiology,1978,59(3):271-274.
    [26] Nordlie F G,Leffler C W.Ionic regulation and the energetics of osmoregulation in Mugil cephalus Lin[J].Comparative Biochemistry&Physiology Part A Physiology,1975,51(1):125-131.
    [27] Furspan P,Prange H D,Greenwald L.Energetics and osmoregulation in the catfish,Ictalurus nebulosus and I.Punctatus[J].Comparative Biochemistry&Physiology Part A Physiology,1984,77(4):773-778.
    [28] Rao G M.Oxygen consumption of rainbow trout(Salmo gairdneri)in relation to activity and salinity[J].Canadian Journal of Zoology,1968,46(4):781-786.
    [29] Nordlie F G,Walsh S J,Haney D C,et al.The influence of ambient salinity on routine metabolism in the teleost Cyprinodon variegatus Lacepède[J].Journal of Fish Biology,1991,38(1):115-122.
    [30] Toepfer C,Barton M.Influence of salinity on the rates of oxygen consumption in two species of freshwater fishes,Phoxinus erythrogaster(family Cyprinidae),and Fundulus catenatus(family Fundulidae)[J].Hydrobiologia,1992,242(3):149-154.
    [31] Bushnell P G,Brill R W.Oxygen transport and cardiovascular responses in skipjack tuna(Katsuwonus pelamis)and yellowfin tuna(Thunnus albacares)exposed to acute hypoxia[J].Journal of Comparative Physiology B-biochemical Systemic&Environmental Physiology,1992,162(2):131-143.
    [32] Sokolova I M,Frederich M,Bagwe R,et al.Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates[J].Marine Environmental Research,2012,79(4):1-15.
    [33] Nordlie F G.Plasma osmotic,Na+and Cl-regulation under euryhaline conditions in Cyprinodon variegatus lacépède[J].Comparative Biochemistry&Physiology Part A Physiology,1987,86(1):57-61.
    [34] Sturrock A M,Hunter E,Milton J A,et al.Analysis methods and reference concentrations of 12 minor and trace elements in fish blood plasma[J].Journal of Trace Elements in Medicine&Biology,2013,27(4):273.
    [35] Handeland S O,Bj9rnsson,Arnesen A M,et al.Seawater adaptation and growth of post-smolt Atlantic salmon(Salmo salar)of wild and farmed strains[J].Aquaculture,2003,220(1-4):367-384.
    [36] Sardella B A,Kültz D,Cech J J,et al.Salinity-dependent changes in Na+/K+-ATPase content of mitochondria-rich cells contribute to differences in thermal tolerance of Mozambique tilapia[J].Journal of Comparative Physiology B,2008,178(3):249-256.
    [37]章龙珍,罗集光,赵峰,等.盐度对点篮子鱼血清渗透压、离子含量及鳃丝Na+/K+-ATP酶活力的影响[J].海洋渔业,2015,37(5):449-456.Zhang L Z,Luo J G,Zhao F,et al.Influence of salinity on serum osmolarity,ion content and gill Na+,K+-ATPase activity of Siganus guttatas[J].Marine Fisheries,2015,37(5):449-456.
    [38] Krayushkina L S,Semenova O G,Vyushina A V,et al.Morphofunctional remodelling of the osmoregulatory system in starred sturgeon Acipenser stellatus(Acipenseridae)during transition from hyperosmotic to hypoosmotic regulation[J].Journal of Ichthyology,2015,55(2):259-272.
    [39]贾倩倩,吕为群.低盐胁迫对褐牙鲆成鱼血浆渗透压、皮质醇、生长激素和催乳素的影响[J].上海海洋大学学报,2016,25(1):71-77.Jia Q Q,Lu W Q.Effects of low salinity stress on plasma osmolality,cortisol,prolactin and growth hormone of Japanese flounder,Paralichthys olivaceus[J].Journal of Shanghai Ocean University,2016,25(1):71-77.
    [40] Jarvis P L,Ballantyne J S.Metabolic responses to salinity acclimation in juvenile shortnose sturgeon Acipenser brevirostrum[J].Aquaculture,2003,219(1-4):891-909.
    [41]潘鲁青,唐贤明,刘泓宇,等.盐度对褐牙鲆(Paralichthys olivaceus)幼鱼血浆渗透压和鳃丝Na+-K+-ATPase活力的影响[J].海洋与湖沼,2006,37(1):1-6.Pan L Q,Tang X M,Liu H Y,et al.Effects of salinity on plasma osmolality and gill Na+-K+-ATPase activity of juvinile japanese flounder Paralichthys olivaceus[J].Oceanologia Et Limnologia Sinica,2006,37(1):1-6.
    [42]Hiroi J,Mccormick S D.Variation in salinity tolerance,gill Na+/K+-ATPase,Na+/K+/2Cl-cotransporter and mitochondria-rich cell distribution in three salmonids Salvelinus namaycush,Salvelinus fontinalis and Salmo salar[J].The Journal of Experimental Biology,2007,210(6):1015-1024.
    [43] Gaumet F,Boeuf G,Severe A A,et al.Effects of salinity on the ionic balance and growth of juvenile turbot[J].Journal of Fish Biology,1995,47(5):865-876.
    [44] Lambert Y,Dutil J D,Munro J.Effects of intermediate and low salinity conditions on growth rate and ood conversion of Atlantic cod(Gadus morhua)[J].Canadian Journal of Fisheries&Aquatic Sciences,1994,51(7):1569-1576.
    [45] Imsland A K,Foss A,Gunnarsson S,et al.The interaction of temperature and salinity on growth and food conversion in juvenile turbot(Scophthalmus maximus)[J].Aquaculture,2001,198(3-4):353-367.
    [46] Woo N Y S,Kelly S P.Effects of salinity and nutritional status on growth and metabolism of Spams sarba in a closed seawater system[J].Aquaculture,1995,135(1-3):229-238.
    [47]蒋玫,李磊,沈新强,等.鲻鱼鳃组织14-3-3a、NKCCla、Apo-14和Na+-K+-ATPaseβ基因表达对盐度变化的响应[J].生态学杂志,2014,33(9):2429-2435.Jiang M,Li L,Shen X Q,et al.Effects of abrupt salinity stress on gill 14-3-3a.NKCCla,Apo-14and Na+-K+-ATPaseβexpression of Mugil cephalus[J].Chinese Journal of Ecology,2014,33(9):2429-2435.
    [48] Rao G M M.Oxygen consumption of rainbow trout(Salmo gairdneri)in relation to activity and salinity[J].Canadian Journal of Zoology,1968,46(4):781-786.
    [49] Swanson C.Interactive effects of salinity on metabolic rate,activity,growth and osmoregulation in the euryhaline milkfish(Chanos chanos)[J].Journal of Experimental Biology,1998,201(24):3355-3366.
    [50] Hwang P P,Lee T H,Lin L Y.Ion regulation in fish gills:Recent progress in the cellular and molecular mechanisms[J].American Journal of Physiology-Regulatory,Integrative and Comparative Physiology,2011,301(1):28-47.
    [51]张国政,黄国强,田思娟,等.盐度胁迫及恢复对褐牙鲆幼鱼生长、能量分配和身体成分的影响[J].水产学报,2008,32(3):402-410.Zhang G Z,Huang G Q,Tian S J,et al.Effect of salinity stress and following recovery on the growth,energy allocation and composition of juvenile Paralichthys olivaceus[J].Journal of Fisheries of China,2008,32(3):402-410.
    [52] Rodrigues A P,Oliveira P C,Guilhermino L,et al.Effects of salinity stress on neurotransmission,energy metabolism,and antioxidant biomarkers of Carcinus maenas from two estuaries of the NW Iberian Peninsula[J].Marine Biology,2012,159(9):2061-2074.
    [53]田相利,王国栋,董双林,等.盐度和温度对半滑舌鳎生长、渗透生理及能量收支的影响[J].中国水产科学,2010,17(4):771-782.Tian X L,Wang G D,Dong S L,et al.Effects of salinity and temperature on growth,osmophysiology and energy budget of tongue sole(Cynoglossus semilaevis Günther)[J].Journal of Fishery Sciences of China,2010,17(4):771-782.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700