OSI-027抑制mTOR信号通路减轻高氧诱导的幼鼠肺损伤
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:OSI-027 alleviates hyperoxia-induced lung injury in juvenile rats by inhibiting the mTOR signaling pathway
  • 作者:梁木林 ; 刘成军 ; 党红星
  • 英文作者:Liang Mulin;Liu Chengjun;Dang Hongxing;Department of PICU,Children's Hospital of Chongqing Medical University,Ministry of Education Key Laboratory of Child Development and Disorders,China International Science and Technology Cooperation Base of Child Development and Critical Disorders,Chongqing Key Laboratory Pediatrics;
  • 关键词:高体积分数氧 ; 肺损伤纤维化 ; 哺乳动物雷帕霉素靶蛋白 ; 雷帕霉素 ; OSI-027
  • 英文关键词:hyperoxia;;lung injury and fibrosis;;mammalian target of rapamycin;;rapamycin;;OSI-027
  • 中文刊名:ZQYK
  • 英文刊名:Journal of Chongqing Medical University
  • 机构:重庆医科大学附属儿童医院重症医学科儿童发育疾病研究教育部重点实验室儿童发育重大疾病国家国际科技合作基地儿科学重庆市重点实验室;
  • 出版日期:2018-11-06 12:31
  • 出版单位:重庆医科大学学报
  • 年:2019
  • 期:v.44
  • 基金:重庆市基础与前沿研究计划资助项目(编号:渝中科[2015]16号-13)
  • 语种:中文;
  • 页:ZQYK201905008
  • 页数:9
  • CN:05
  • ISSN:50-1046/R
  • 分类号:48-56
摘要
目的:探讨哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,m TOR)1/2双重抑制剂OSI-027对高体积分数氧(高氧)致sprague-dawley(SD)幼鼠肺损伤及纤维化的抑制作用。方法:72只3周龄SD幼鼠随机分为空气+生理盐水、高氧+生理盐水、高氧+雷帕霉素和高氧+OSI-027组,分别建立动物模型(各组n=18)。高氧干预采用90%氧气持续处理,生理盐水、雷帕霉素、OSI-027干预分别于观察期第1、3、6、8、10、13天经腹腔注射给药,在造模第3、7、14天取各组幼鼠测量体质量变化、肺湿干重比(wet/dry ratio,W/D)、肺组织病理学检查、肺损伤评分、肺泡间隔厚度测定、肺组织免疫组化和蛋白印迹检测m TOR及磷酸化核糖体S6蛋白激酶(pS6K1)蛋白在肺组织的分布和表达。结果:从时间因素看,各组幼鼠体质量(F时间=297.098,P=0.000)、mTOR免疫组化(F时间=379.978,P=0.000)、mTOR(F时间=166.991,P=0.000)和pS6K1(F时间=122.676,P=0.000)蛋白水平都随时间延长而增加。除空气组外,其余各组肺损伤评分(F时间=1410.362,P=0.000)、肺泡间隔厚度(F时间=356.312,P=0.000)、pS6K1免疫组化(F时间=57.992,P=0.000)都随时间延长而升高,肺W/D(F时间=28.915,P=0.000)第3、7天时升高,第14天时下降。从分组因素看,体质量(F分组=176.597,P=0.000)空气组明显高于其他组,肺W/D(F分组=28.484,P=0.000)和肺泡间隔厚度(F分组=296.223,P=0.000)空气组明显低于其他组,除第3天外,mTOR免疫组化(F分组=134.100,P=0.000)高氧组明显高于其他组,PS6K1免疫组化(F分组=234.697,P=0.000)、mTOR(F分组=59.377,P=0.000)和PS6K1(F分组=101.837,P=0.000)蛋白印迹高氧组明显高于其他组,肺损伤评分(F分组=2 420.076,P=0.000)高氧雷帕组明显高于其他组,高氧OSI组明显低于高氧组和高氧雷帕组。结论:高浓度氧可激活肺组织mTOR信号途径;mTOR可能促进了高氧肺损伤纤维化的发生发展,其调控机制可能与抑制mTOR信号通路的活化有关。mTOR复合物1/2(mTORC1/2)双重抑制剂OSI-027能减轻高氧致SD幼鼠肺损伤及纤维化。
        Objective:To investigate the inhibitory effect of the mammalian target of rapamycin(mTOR) 1/2 dual inhibitor OSI-027 on hyperoxia-induced lung injury and fibrosis in juvenile Sprague-Dawley(SD) rats. Methods:A total of 72 juvenile SD rats aged 3 weeks were randomly divided into air+normal saline group,hyperoxia+normal saline group,hyperoxia+rapamycin group,and hyperoxia+OSI-027 group,with 18 rats in each group. An animal model was established. Hyperoxia intervention was performed with 90% oxy gen,and normal saline,rapamycin,and OSI-027 interventions were performed via intraperitoneal injection on days 1,3,6,8,10,and13 of observation,respectively. On days 3,7,and 14,the change in body weight,lung wet/dry(W/D) ratio,lung injury scores,and alveolar septal thickness were measured;lung histopathological examination was performed;immunohistochemistry and Western blot were used to evaluate the distribution and expression of mTOR and phosphorylated ribosomal S6 kinase(pS6 K1) in lung tissue. Results:As for the factor of time,there were significant increases over time in body weight(Ftime=297.098,P=0.000),immunohistochemistry of m TOR(Ftime=379.978,P=0.000),m TOR(Ftime=166.991,P=0.000),and pS6 K1(Ftime=122.676,P=0.000). All groups except the air+normal saline group had significant increases in lung injury scores(Ftime=1 410.362,P=0.000),alveolar septum thickness(Ftime=356.312,P=0.000),and pS6 K1 immunohistochemistry(Ftime=57.992,P=0.000) over time,as well as an increase in lung W/D ratio on days 3 and 7(Ftime=28.915,P=0.000) and a reduction in lung W/D ratio on day 14. As for the factor of grouping,the air+normal saline group had a significantly higher body weight(Fgroup=176.597,P=0.000) and significantly lower lung W/D ratio(Fgroup=28.484,P=0.000) and alveolar septum thickness(Fgroup=296.223,P=0.000) than the other groups. At all time points except day 3,the hyperoxia+normal saline group had significantly higher mTOR immunohistochemistry(Fgroup=134.100,P=0.000),pS6 K1 immunohistochemistry(Fgroup=234.697,P=0.000),mTOR(Fgroup=59.377,P=0.000),and p S6 K1(Fgroup=101.837,P=0.000) than the other groups;the hyperoxia+rapamycin group had significantly higher lung injury scores than the other groups(Fgroup=2 420.076,P=0.000),and the hyperoxia+OSI-027 group had significantly lower scores than the hyperoxia+normal saline group and the hyperoxia+rapamycin group. Conclusion:A high concentration of oxygen can activate the mTOR signaling pathway in lung tissue;mTOR may promote the development and progression of hyperoxia-induced pulmonary fibrosis,possibly by inhibiting activation of the mTOR signaling pathway. OSI-027 can alleviate hyperoxia-induced lung injury and fibrosis in juvenile SD rats.
引文
[1] Zhang PX,Han CH,Zhou FJ,et al. Renin-angiotensin system and its role in hyperoxic acute lung injury[J]. Undersea Hyperb Med,2016,43(3):239-246.
    [2] Helmerhorst HJ,Roos-Blom MJ,van Westerloo DJ,et al. Association between arterial hyperoxia and outcome in subsets of critical illness:a systematic review,meta-analysis,and meta-regression of cohort studies[J]. Crit Care Med,2015,43(7):1508-1519.
    [3] Higgins RD,Jobe AH,Koso-Thomas M,et al. Bronchopulmonary dysplasia:executive summary of a workshop[J]. J Pediatr,2018,197:300-308.
    [4] Thiyagarajan V,Lee KW,Leong MK,et al. Potential natural mTOR inhibitors screened by in silico approach and suppress hepatic stellate cells activation[J]. J Biomol Struct Dyn,2017[Epub ahead of print]. DOI:10.1080/07391102.2017.1411295.
    [5] Lawrence J,Nho R. The role of the mammalian target of rapamycin(mTOR)in pulmonary fibrosis[J]. Int J Mol Sci,2018,19(3):E778.
    [6] Xu Y,Tai W,Qu X,et al. Rapamycin protects against paraquatinduced pulmonary fibrosis:activation of Nrf2 signaling pathway[J].Biochem Biophys Res Commun,2017,490(2):535-540.
    [7] Dang H,Wang S,Yang L,et al. Upregulation of Shh and Ptc1 in hyperoxiainduced acute lung injury in neonatal rats[J]. Mol Med Rep,2012,6(2):297-302.
    [8] Zhang J,Hu X,Wang S,et al. Protective effects of low-dose rapamycin combined with valsartan on podocytes of diabetic rats[J]. Int J Clin Exp Med,2015,8(8):13275-13281.
    [9] Mateo J,Olmos D,Dumez H,et al. A first in man,dose-finding study of the m TORC1/mTORC2 inhibitor OSI-027 in patients with advanced solid malignancies[J]. Br J Cancer,2016,114(8):889-896.
    [10] Matute-Bello G,Downey G,Moore BB,et al. An official American Thoracic Society workshop report:features and measurements of experimental acute lung injury in animals[J]. Am J Respir Cell Mol Biol,2011,44(5):725-738.
    [11] Carnesecchi S,Deffert C,Pagano A,et al. NADPH oxidase-1 plays a crucial role in hyperoxia-induced acute lung injury in mice[J]. Am J Respir Crit Care Med,2009,180(10):972-981.
    [12] Kallet RH,Matthay MA. Hyperoxic acute lung injury[J]. Respir Care,2013,58(1):123-141.
    [13] Tee AR,Blenis J. mTOR,translational control and human disease[J]. Semin Cell Dev Biol,2005,16(1):29-37.
    [14] Yu KR,Park SB,Jung JW,et al. HMGA2 regulates the in vitro aging and proliferation of human umbilical cord blood-derived stromal cells through the mTOR/p70S6K signaling pathway[J]. Stem Cell Res,2013,10(2):156-165.
    [15] Parrales A,López E,Lee-Rivera I,et al. ERK1/2-dependent activation of m TOR/mTORC1/p70S6K regulates thrombin-induced RPE cell proliferation[J]. Cell Signal,2013,25(4):829-838.
    [16] Thoreen CC,Sabatini DM. Rapamycin inhibits mTORC1,but not completely[J]. Autophagy,2009,5(5):725-726.
    [17] Dowling RJ,Topisirovic I,Fonseca BD,et al. Dissecting the role of mTOR:lessons from m TOR inhibitors[J]. Biochim Biophys Acta,2010,1804(3):433-439.
    [18] Yap TA,Garrett MD,Walton MI,et al. Targeting the PI3K-AKTmTOR pathway:progress,pitfalls,and promises[J]. Curr Opin Pharmacol,2008,8(4):393-412.
    [19] Sun Y,Zhao S,Li X,et al. Local application of rapamycin reduces epidural fibrosis after laminectomy via inhibiting fibroblast proliferation and prompting apoptosis[J]. J Orthop Surg Res,2016,11(1):58.
    [20] Yoshizaki A,Yanaba K,Yoshizaki A,et al. Treatment with rapamycin prevents fibrosis in tight-skin and bleomycin-induced mouse models of systemic sclerosis[J]. Arthritis Rheum,2010,62(8):2476-2487.
    [21] Wu H,Chen J,Xu J,et al. Blocking rpS6 phosphorylation exacerbates Tsc1 deletion-induced kidney growth[J]. J Am Soc Nephrol,2016,27(4):1145-1158.
    [22] Sarbassov DD,Ali SM,Sengupta S,et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB[J]. Mol Cell,2006,22(2):159-168.
    [23] Gentzler RD,Altman JK,Platanias LC. An overview of the mTOR pathway as a target in cancer therapy[J]. Expert Opin Ther Targets,2012,16(5):481-489.
    [24] Mitra A,Luna JI,Marusina AI,et al. Dual mTOR inhibition is required to prevent TGF-beta-mediated fibrosis:implications for scleroderma[J]. J Invest Dermatol,2015,135(11):2873-2876.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700