新型组合结构高墩的静力学分析方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Static Analysis Method of New Composite High Pier Structure
  • 作者:徐秀丽 ; 尹东亚 ; 李枝军 ; 唐雨生 ; 周叮
  • 英文作者:XU Xiu-li;YIN Dong-ya;LI Zhi-jun;TANG Yu-sheng;ZHOU Ding;School of Civil Engineering, Nanjing Tech University;
  • 关键词:桥梁工程 ; 新型高墩 ; 连续连杆法 ; 自耗能结构 ; 参数优化
  • 英文关键词:bridge engineering;;new high pier;;continuous link method;;self-dissipating energy structure;;parameter optimization
  • 中文刊名:ZGGL
  • 英文刊名:China Journal of Highway and Transport
  • 机构:南京工业大学土木工程学院;
  • 出版日期:2019-02-15
  • 出版单位:中国公路学报
  • 年:2019
  • 期:v.32;No.186
  • 基金:国家重点研发计划项目(2017YFC0703400);; 国家自然科学基金项目(51778289);; 国家重点基础研究发展计划(“九七三”计划)项目(2013CB036300)
  • 语种:中文;
  • 页:ZGGL201902009
  • 页数:10
  • CN:02
  • ISSN:61-1313/U
  • 分类号:81-90
摘要
特大跨桥梁的塔柱以及超高桥梁的墩柱通常采用薄壁截面形式,以克服自重过大的问题。当薄壁墩柱遭遇强地震作用时,通过墩柱产生塑性铰来耗散地震能量,保护整体结构的安全性。但薄壁墩柱存在耗能能力有限、修复困难的缺陷,为便于概念设计,通过对该结构体系进行力学简化,使用连续连杆法对受力特征进行分析,建立了相应的力法方程并对其理论求解方法进行推导;根据位移等效原则,求解出顶部受集中力的悬臂墩等效惯性矩,便于计算顶部位移;提出了比例参数的概念,用于结构构件进行参数优化,可方便、有效地实现结构的力学性能设计;为验证连续连杆法、等效惯性矩计算方法的可靠性,进行了有限元数值分析。研究结果表明:解析解与试验结果及有限元分析结果吻合较好;提出的新型自耗能高墩兼具较大的耗能能力和可恢复性的优势;采用连续连杆法分析新型自耗能高墩结构体系的内力和位移是可行的。所得结果对新型自耗能高墩结构体系的设计具有指导性,利用等效惯性矩求解结构的顶点位移可以很好地满足设计精度要求。
        The columns of extra long-span bridges and pier columns of super tall bridges are usually designed with thin-walled sections to overcome the problem of excessive weight of the tower column and pillar. When encountering a strong earthquake, the thin-walled pier columns generate plastic hinges to dissipate seismic energy, which can ensure the safety of the whole structure. However, thin-walled pier columns have limited energy dissipation and repairing difficulties. In order to facilitate the concept design, the mechanics of this structural system were simplified. Then, the continuous link method was used to analyze the mechanical properties. Afterwards, the corresponding mechanics equation was established, and the theoretical solution was derived. Based on the principle of displacement equivalence, the equivalent inertial moment of the cantilever pier with a concentrated force was solved, which was convenient for top displacement calculation. The proposed concept of proportional parameters was used to optimize the parameters of the structural components. This can easily and effectively realize mechanical property design of the structure. Finite element numerical analyses were carried out to verify the reliabilities of the continuous link method and equivalent inertial moment calculation method. The results show that the analytical solutions are in good agreement with the results of the model experiments and finite element analysis results. The new high pier structure system with self-dissipating energy capability has the advantages of both high energy dissipation and recoverability. It is feasible to analyze the internal force and displacement of the new high pier structure system with self-dissipative energy capacity by the continuous link method, and the results are instructive for the design of new high pier structure systems with this property. Using the equivalent inertial moment to solve the structure of the vertex displacement can help meet the accuracy requirements.
引文
[1] 李小军.铁路大跨桥梁新型高墩抗震性能研究[J].兰州交通大学学报,2009,28(4):49-53. LI Xiao-jun. Research on Seismic Performance of Neotype Tall Pier for Long-span Railway Bridges [J]. Journal of Lanzhou Jiaotong University, 2009, 28 (4): 49-53.
    [2] 周雁群,张晔芝,叶梅新,等.铁路桥梁新型柱板式高墩双柱模型的抗震性能[J].中南大学学报:自然科学版,2013,44(6):2506-2514. ZHOU Yan-qun, ZHANG Ye-zhi, YE Mei-xin, et al. Seismic Performance of Neotype Column-slab High Piers in Double-column Model of Railway Bridge [J]. Journal of Central South University: Science and Technology, 2013, 44 (6): 2506-2514.
    [3] HINES E M, DAZIO A, SEIBLE F. Seismic Performance of Hollow Rectangular Reinforced Concrete Piers with Highly-confined Boundary Elements: Phase Ⅲ-Web Crushing Tests [R]. San Diego: University of California, San Diego, 2002.
    [4] HINES E M, DAZIO A, SEIBLE F. Structural Testing of New East Bay Skyway Piers [J]. ACI Structural Journal, 2006, 103 (1): 103-112.
    [5] 王占飞,隋伟宁,李帼昌,等.水平往复荷载作用下部分填充混凝土圆形钢桥墩柱的力学性能[J].中国公路学报,2015,28(1):62-70. WANG Zhan-fei, SUI Wei-ning, LI Guo-chang, et al. Mechanical Behavior of Partially Concrete-filled Steel Circular Bridge Piers Under Cyclic Lateral Load [J]. China Journal of Highway and Transport, 2015, 28 (1): 62-70.
    [6] TILBY C. South Rangitikei Railway Bridge Construction [J]. Transactions of the New Zealand Institution of Engineers Incorporated: Civil Engineering Section, 1981, 8 (2): 33-48.
    [7] 吕西林,陈云,毛苑君.结构抗震设计的新概念——可恢复功能结构[J].同济大学学报:自然科学版,2011,39(7):941-948. LU Xi-lin, CHEN Yun, MAO Yuan-jun. New Concept of Structural Seismic Design: Earthquake Resilient Structural [J]. Journal of Tongji University: Natural Science, 2011, 39 (7): 941-948.
    [8] 吕西林,陈云,蒋欢军.可更换连梁保险丝抗震性能试验研究[J].同济大学学报:自然科学版,2013,41(9):1318-1325,1332. LU Xi-lin, CHEN Yun, JIANG Huan-jun. Experimental Study on Seismic Behavior of “Fuse” of Replaceable Coupling Beam [J]. Journal of Tongji University: Natural Science, 2013, 41 (9): 1318-1325, 1332.
    [9] 吕西林,周颖,陈聪.可恢复功能抗震结构新体系研究进展[J].地震工程与工程振动,2014,34(4):130-139. LU Xi-lin, ZHOU Ying, CHEN Cong. Research Progress on Innovative Earthquake-resilient Structural Systems [J]. Earthquake Engineering and Engineering Dynamics, 2014, 34 (4): 130-139.
    [10] 董慧慧,白玉磊,韩强,等.新型SCEB力学性能及其在双柱式桥梁结构中的应用[J].中国公路学报,2017,30(12):196-204. DONG Hui-hui, BAI Yu-lei, HAN Qiang, et al. Mechanical Performance of New Type of Self-centering Energy Dissipation Brace and Its Application in Double-column Bridge Structures [J]. China Journal of Highway and Transport, 2017, 30 (12): 196-204.
    [11] 孙治国,华承俊,石岩,等.利用BRB实现桥梁排架基于保险丝理念的抗震设计[J].振动与冲击,2015,34(22):199-205. SUN Zhi-guo, HUA Cheng-jun, SHI Yan, et al. Seismic Design of Bents with BRB as a Structural Fuse [J]. Journal of Vibration and Shock, 2015, 34 (22): 199-205.
    [12] 刘晓刚,李连友,聂鑫,等.组合式消能减震墩柱试验与设计方法研究[J].土木工程学报,2017,50(2):73-81. LIU Xiao-gang, LI Lian-you, NIE Xin, et al. Analytical and Experimental Study on the Composite Energy Dissipation Pier [J]. China Civil Engineering Journal, 2017, 50 (2): 73-81.
    [13] JTG/T B02-01—2008,公路桥梁抗震设计细则[S]. JTG/T B02-01—2008, Guideline for Seismic Design of Highway Bridges [S].
    [14] Caltrans-2013, Seismic Design Criteria Version 1.7 [S].
    [15] AASHTO LRFD: 2007, Guide Specifications for LRFD Seismic Bridge Design [S].
    [16] 《中国公路学报》编辑部.中国桥梁工程学术研究综述·2014[J].中国公路学报,2014,27(5):1-96. Editorial Department of China Journal of Highway and Transport. Review on China's Bridge Engineering Research: 2014 [J]. China Journal of Highway and Transport, 2014, 27 (5): 1-96.
    [17] 龙驭球,包世华.结构力学Ⅰ—基本教程[M].2版.北京:高等教育出版社,2006. LONG Yu-qiu, BAO Shi-hua. Structural Mechanics Ⅰ: Basic Tutorial [M]. 2nd ed. Beijing: Higher Education Press, 2006.
    [18] 施炳华.常用截面剪应力分布不均匀系数的计算公式[J].建筑结构学报,1984,5(2):66-70. SHI Bing-hua. Calculation Formula of Uneven Coefficient of Commonly Used Shear Stress Distribution [J]. Journal of Building Structures, 1984, 5 (2): 66-70.
    [19] 胡庆昌.钢筋混凝土房屋抗震设计[M].北京:地震出版社,1991. HU Qing-chang. Seismic Design of Reinforced Concrete Buildings [M]. Beijing: Seismic Press, 1991.
    [20] 徐秀丽,唐雨生,周叮,等.新型自耗能高墩抗震性能研究[J].中国公路学报,2017,30(12):81-88. XU Xiu-li, TANG Yu-sheng, ZHOU Ding, et al. Research on Seismic Performance of New Self-dissipation Energy High Pier [J]. China Journal of Highway and Transport, 2017, 30 (12): 81-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700