石灰对Cu、Cd、Pb、Zn复合污染土壤中重金属化学形态的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:EFFECTS OF LIME ON CHEMICAL FORMS OF HEAVY METALS UNDER COMBINED POLLUTION OF Cu,Cd,Pb AND Zn IN SOILS
  • 作者:刘勇 ; 刘燕 ; 朱光旭 ; 伍廷亮 ; 梁清 ; 王星星
  • 英文作者:LIU Yong;LIU Yan;ZHU Guang-xu;WU Ting-liang;LIANG Qing;WANG Xing-xing;School of Biological and Environmental Engineering,Guiyang University;State Key Laboratory of Environmental Geochemistry,Institute of Geochemistry Chinese Academy of Sciences;University of Chinese Academy of Science;
  • 关键词:重金属 ; 复合污染 ; 石灰 ; 化学形态 ; 土壤
  • 英文关键词:heavy metals;;combined pollution;;lime;;chemical form;;soils
  • 中文刊名:HJGC
  • 英文刊名:Environmental Engineering
  • 机构:贵阳学院生物与环境工程学院;中国科学院地球化学研究所环境地球化学国家重点实验室;中国科学院大学;
  • 出版日期:2019-02-15
  • 出版单位:环境工程
  • 年:2019
  • 期:v.37;No.248
  • 基金:贵州省科技厅联合基金(黔科合LH字[2014]7168号);; 贵阳市科技局贵阳学院专项资金(GYU-KYZ[2018]02-18);; 贵州省教育厅基金(黔教合KY字[2015]452号);; 贵州省应用基础研究计划重大项目(黔科合J重大字[2015]2001号);; 贵州省生物学教学团队(2017158322);; 贵州省大学生创新训练项目(201510976051,20170275207)
  • 语种:中文;
  • 页:HJGC201902040
  • 页数:7
  • CN:02
  • ISSN:11-2097/X
  • 分类号:161-167
摘要
通过室内模拟试验,研究了石灰对不同处理(轻度、中度、重度)水平下土壤典型重金属Cu、Cd、Pb、Zn化学形态的影响。结果表明:添加石灰60 d后土壤pH值、有机质含量均明显升高,4种重金属化学形态总体呈现由水溶态、交换态等活性态向有机态、残渣态等非活性态转化的趋势,其生物活性、迁移能力及淋溶能力均有不同程度下降,表明石灰是土壤重金属复合污染的有效修复剂。同时,不同处理水平下土壤4种重金属对石灰添加量的响应有差异,其中土壤Cu、Cd生物活性受石灰添加量影响较小,但中度、重度处理下土壤Pb、Zn生物活性和Cd、Zn迁移能力以及轻度处理下土壤Pb迁移能力均随着石灰添加量增加而显著降低,轻度处理下重金属淋溶能力在0.2 g石灰时最低,在中度、重度处理下随着石灰添加量增加而降低。
        The research was constructed to investigate the effects of lime on heavy metal chemical forms under combined pollution of Cu, Cd, Pb and Zn in soils with different treatment levels(mild, moderate, severe) based on results of simulated experiment. The heavy metals fractions in soils were analyzed by using Tessier method. The results showed that the pH values and organic matter contents of the soils increased obviously 60 days later after adding lime. The chemical morphology of four heavy metals presented the trend of the transformation from the active state(such as the water soluble state and the exchange state) to the non-active state(such as the organic state and the residue state). In general, the biological activity, migration ability and leaching ability of the four heavy metals declined, which indicated that lime was an effective modifier for soil heavy metal compound pollution. Meanwhile, the response of the heavy metals of different treatment levels to the addition of lime was different. The biological activity of Cu and Cd was less affected by adding lime. However, the biological activity of Pb, Zn under moderate and severe treatment, the mobility ability of Cd and Zn under moderate and severe treatment, and Pb under mild treatment were all significantly reduced with the increase of lime. Four heavy metal leaching ability value were lowest under mild treatment with 0.2 g lime, and decreased with the increase of lime in moderate and severe treatment.
引文
[1] Li P J, Sun T H, Gong Z Q. An approach to the theoretical meaning of ecological remediation of contaminated soil[J]. Chinese Journal of Applied Ecology, 2006, 17(4): 747-750.
    [2] Tessier A. Sequential extraction procedure for the speciation of particulate, trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851.
    [3] 韩春梅, 王林山, 巩宗强, 等. 土壤中重金属形态分析及其环境学意义[J]. 生态学杂志, 2005, 24(12): 1499-1502.
    [4] 熊仕娟, 徐卫红, 谢文文, 等. 纳米沸石对土壤Cd 形态及大白菜Cd吸收的影响[J]. 环境科学, 2015, 36(12): 4630-4641.
    [5] 曹心德, 魏晓欣, 代革联, 等. 土壤重金属复合污染及其化学钝化修复技术研究进展[J]. 环境工程学报, 2011, 5(7): 1441-1453.
    [6] 周婷, 南忠仁, 王胜利, 等. 干旱区绿洲土壤Cd/Pb 复合污染下重金属形态转化与生物有效性[J]. 农业环境科学学报, 2012, 31(6): 1089-1096.
    [7] Madej N P, Perez-de-mora A, Burgos P, et al. Do amended, polluted soils require re-treatment for sustainable risk reduction?—Evidence from field experiments[J]. Geoderma, 2010, 159(1): 174-181.
    [8] 黄益宗, 郝晓伟, 雷鸣, 等. 重金属污染土壤修复技术及其修复实践[J]. 农业环境科学学报, 2013, 32(3): 409-417.
    [9] Xu R K, Zhao A Z. Effect of biochars on adsorption of Cu(Ⅱ), Pb(Ⅱ) and Cd(Ⅱ) by three variable charge soils from southern China[J].Environmental Science and Pollution Research, 2013, 20(12): 8491-8501.
    [10] 刘晶晶, 杨兴, 陆扣萍, 等. 生物质炭对土壤重金属形态转化及其有效性的影响[J]. 环境科学学报, 2015, 35(11): 3679-3687.
    [11] 高译丹, 梁成华, 裴中健, 等. 施用生物炭和石灰对土壤镉形态转化的影响[J]. 水土保持学报, 2014, 28(2): 258-261.
    [12] 陈远其, 张煜, 陈国梁. 石灰对土壤重金属污染修复研究进展[J]. 生态环境学报, 2016, 25(8): 1419-1424.
    [13] 郭观林, 周启星. 污染黑土中重金属的形态分布与生物活性研究[J]. 环境化学, 2005, 24(4): 383-388.
    [14] Rauret G. Extraction procedure for the determination of heavy metals in contaminated soil and sediment[J]. Talanta, 1998, 46: 449-455.
    [15] 李平, 王兴祥, 郎漫, 等. 改良剂对Cu、Cd污染土壤重金属形态转化的影响[J]. 中国环境科学, 2012, 32(7): 1241-1249.
    [16] 雷鸣, 廖柏寒, 秦普丰, 等. 矿区污染土壤Pb、Cd、Cu和Zn的形态分布及其生物活性的研究[J]. 生态环境, 2007, 16(3): 807-811.
    [17] Hong C O, Gutierrez J, Yun S W, et al. Heavy metal contamination of arable soil and corn plant in the vicinity of a zinc smelting factory and stabilization by liming [J]. Archives of Environmental Contamination and Toxicology, 2009, 56(2): 190-200.
    [18] 黄震, 黄占斌, 孙朋成, 等. 环境材料对作物吸收重金属Pb、Cd及土壤特性研究[J]. 环境科学学报, 2012, 32(10): 2490-2499.
    [19] 李明遥, 张妍, 杜立宇, 等. 生物炭与沸石混施对土壤Cd形态转化的影响[J]. 水土保持学报, 2014, 28(3): 248-252.
    [20] 谢运河, 纪雄辉, 黄涓, 等. 赤泥、石灰对Cd污染稻田改制玉米吸收积累Cd的影响[J]. 农业环境科学学报, 2014, 33(11): 2104-2110.
    [21] Woldetsadik D, Drechsel P, Keraita B, et al. Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils [J]. Springer Plus, 2016, 5(1): 397.
    [22] 赵康, 苗海珊. 膨胀土改良方法浅议[J]. 河南水利与南水北调, 2015(6): 65-66.
    [23] 李翔, 刘永兵, 宋云, 等. 石灰干化污泥对土壤重金属稳定化处理的效果[J]. 环境工程学报, 2014, 8(8): 3461-3470.
    [24] 崔红标, 范玉超, 周静, 等. 改良剂对土壤铜镉有效性和微生物群落结构的影响[J]. 中国环境科学, 2016, 36(1): 197-205.
    [25] Kostic L, Nikolic N, Samardzic J, et al. Liming of anthropogenically acidified soil promotes phosphorus acquisition in the rhizosphere of wheat [J]. Biology and Fertility of Soils, 2015, 51(3): 289-298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700