氧化亚铜光催化剂性能提升及增强机制的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on the improved performance of cuprous oxide photocatalyst and its enhancement mechanism
  • 作者:龙丹 ; 周俊伶 ; 时洪民 ; 王冠然 ; 李红双 ; 赵苾艺 ; 李贞玉
  • 英文作者:LONG Dan;ZHOU Junling;SHI Hongmin;WANG Guanran;LI Hongshuang;ZHAO Biyi;LI Zhenyu;School of Chemical Engineering,Changchun University of Technology;
  • 关键词:氧化亚铜 ; 光化学 ; 催化 ; 形貌控制 ; 杂原子掺杂 ; 半导体异质结 ; 优化
  • 英文关键词:cuprous oxide;;photochemistry;;catalysis;;morphology control;;heteroatom doping;;semiconductor heterojunction;;optimization
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:长春工业大学化学工程学院;
  • 出版日期:2019-06-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.333
  • 基金:吉林省自然科学基金(20160101322JC);; 吉林省教育厅“十三五”科学技术研究项目(2016350)
  • 语种:中文;
  • 页:HGJZ201906024
  • 页数:12
  • CN:06
  • ISSN:11-1954/TQ
  • 分类号:224-235
摘要
Cu_2O是目前最有潜力的可见光光催化剂之一,在太阳能电池、一氧化碳氧化、光催化剂、传感器、化学模板等方面有着广泛的应用。然而,Cu_2O光生电子-空穴对具有容易复合、易发生光腐蚀、稳定性不好等特性,使其在实际应用上面临很大的挑战,因此如何有效地提高Cu_2O的光催化性能成为国内外研究者关注的焦点。首先,本文围绕Cu_2O半导体的形貌控制、杂原子掺杂以及构建半导体异质结这三方面对Cu_2O光催化性能的提升进行系统阐述,其中构建半导体异质结是提升Cu_2O光催化性能最有效的方法,Cu_2O与贵金属、金属氧化物以及碳材料构成的复合半导体异质结均有效地提高了Cu_2O的光催化活性;其次,从复合半导体异质结、肖特基结以及Z-scheme机制三方面分析并讨论了Cu_2O光催化增强机制;最后对Cu_2O基纳米复合材料在电子结构、界面性质以及表面负载的成分和厚度等方面的研究进行了展望。
        As one of the most promising visible light photocatalysts, Cu_2O has potential applications in many multidisciplinary fields such as solar cells, carbon monoxide oxidation, photocatalysts, sensors,chemical templates. However, due to the easy recombination of its photo-generated electron-hole, quick photocorrosion and poor stability, Cu_2O still faces great challenges in its practical application. Therefore,the studies in the improvement of the photocatalytic performance of Cu_2O has gained extensive attentions.Firstly, three improvement methods of morphology control, heteroatom doping, and semiconductor heterojunction are introduced. It is concluded that the construction of semiconductor heterojunction is the most effective method to improve the photocatalytic performance of Cu_2O and the heterostructures with noble metal, metal oxides, and carbon material are preferred. Secondly, the photocatalytic enhancement mechanism of Cu_2O was discussed with respect to the composited semiconductor heterojunction, Schottky junction and Z-scheme mechanism. Finally, the research directions of Cu_2O-based nanocomposites,which contains electronic structure, interface properties, and composition and thickness of surface loads are given.
引文
[1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38.
    [2] KUMAR S G, DEVI L G. Review on modified TiO2photocatalysis under UV/visible light:selected results and related mechanisms on interfacial charge carrier transfer dynamics[J]. J. Phys. Chem. A, 2011,115(46):13211-13241.
    [3] DAGHRIR R, DROGUI P, ROBERT D. Modified TiO2for environmental photocatalytic applications:a review[J]. Ind. Eng.Chem. Res., 2013, 52(10):3581-3599.
    [4] ZHANG L S, WANG W Z, YANG J O, et al. Sonochemical synthesis of nanocrystallite Bi2O3as a visible-light-driven photocatalyst[J]. Appl.Catal. A-Gen., 2006, 308(7):105-110.
    [5] HARA M, KONDO T, KOMODA M, et al. Cu2O as a photocatalyst for overall water splitting under visible light irradiation[J]. Chem.Commun., 1998, 3(3):357-358.
    [6] BAO N Z, SHEN L M, TAKATA T, et al. Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light[J]. Chem. Mater., 2008, 39(20):110-117.
    [7] CHEN Y J, LIU D P, HUANG Y L, et al. Theoretical model validation study of variable cross-section upright tubular bubble pump[J]. Acta Energiae Solaris Sinica, 2016(4):917-923.
    [8] WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J].Nat. Mater., 2009, 8(1):76-80.
    [9] BAO H, ZHANG W, HUA Q, et al. Crystal-plane-controlled surface restructuring and catalytic performance of oxide nanocrystals[J].Angew. Chem. Int. Ed., 2015, 50(51):12294-12298.
    [10] KUO C-H, HUANG M H. Morphologically controlled synthesis of Cu2O nanocrystals and their properties[J]. Nano Today, 2010, 5(2):106-116.
    [11] LU L, XU X, YAN J, et al. Oxygen vacancy rich Cu2O based composite material with nitrogen doped carbon as matrix for photocatalytic H2production and organic pollutant removal[J]. Dalton Trans., 2018, 47(6):2031-2038.
    [12] SINGH M, JAMPAIAH D, KANDJANI A E, et al. Oxygen-deficient photostable Cu2O for enhanced visible light photocatalytic activity[J].Nanoscale, 2018, 10(13):6039-6050.
    [13] HUA Q, CHEN K, CHANG S, et al. Crystal plane-dependent compositional and structural evolution of uniform Cu2O nanocrystals in aqueous ammonia solutions[J]. J. Mater. Chem. C, 2011, 115(42):20618-20627.
    [14] SUN S, ZHANG H, TANG L, et al. One-pot fabrication of novel cuboctahedral Cu2O crystals enclosed by anisotropic surfaces with enhancing catalytic performance[J]. Phys. Chem. Chem. Phys., 2014,16(38):20424-20428.
    [15] ZHANG Y, DENG B, ZHANG T, et al. Shape effects of Cu2O polyhedral microcrystals on photocatalytic activity[J]. J. Phys. Chem.C, 2010, 114:5073-5079.
    [16] CHEN D S, YU W B, DENG Z, et al. Hollow Cu2O microspheres with two active{111}and{110}facets for highly selective adsorption and photodegradation of anionic dye[J]. RSC Adv., 2015, 5(68):55520-55526.
    [17] ZHENG H Y, QIN L Z, LIN H, et al. Convenient route to welldispersed Cu2O nanospheres and their use as photocatalysts[J]. J.Nanosci. Nanotechnol., 2015, 15(8):6063-6069.
    [18] MENG X Y, TIAN G H, CHEN Y J, et al. Room temperature solution synthesis of hierarchical bow-like Cu2O with high visible light driven photocatalytic activity[J]. RSC Adv., 2012, 2(7):2875-2881.
    [19] ZHANG W X, YANG X N, ZHU Q, et al. One-pot room temperature synthesis of Cu2O/Ag composite nanospheres with enhanced visiblelight-driven photocatalytic performance[J]. Ind. Eng. Chem. Res.,2014, 53(42):16316-16323.
    [20] XIA Y M, HE Z M, HU K J, et al. Fabrication of n-SrTiO3/p-Cu2O heterojunction composites with enhanced photocatalytic performance[J]. J. Alloy. Compd., 2018, 753:356-363.
    [21] YAN X R, XU R P, GUO J K, et al. Enhanced photocatalytic activity of Cu2O/g-C3N4heterojunction coupled with reduced graphene oxide three-dimensional aerogel photocatalysis[J]. Mater. Res. Bull., 2017,96:18-27.
    [22] LI X L, MA Y J, YANG Z, et al. Hierarchical heterostructures based onpricklyNinanowires/Cu2Onanoparticleswithenhancedphotocatalytic activity[J]. Dalton Trans., 2016, 45(17):7258-7266.
    [23] ZHANG Y X, ZHOU X B, ZHAO Y Y, et al. One-step solvothermal synthesis of interlaced nanoflake-assembled flower-like hierarchical Ag/Cu2O composite microspheres with enhanced visible light photocatalytic properties[J]. RSC Adv., 2017, 7(12):6957-6965.
    [24] KOU T, JIN C, ZHANG C, et al. Nanoporous core-shell Cu@Cu2O nanocomposites with superior photocatalytic properties towards the degradation of methyl orange[J]. RSC Adv., 2012, 2(33):12636-12643.
    [25] ZOU X, FAN H, TIAN Y, et al. Microwave-assisted hydrothermal synthesis of Cu/Cu2O hollow spheres with enhanced photocatalytic and gas sensing activities at room temperature[J]. Dalton Trans., 2015, 44(17):7811-7821.
    [26] SUN S D, KONG C C, YOU H J, et al. Facet-selective growth of CuCu2O heterogeneous architectures[J]. Crystengcomm, 2012, 14(1):40-43.
    [27] KONG L, CHEN W, MA D, et al. Size control of Au@Cu2O octahedra for excellent photocatalytic performance[J]. J. Mater. Chem., 2012, 22(22):719-724.
    [28] CHU C Y, HUANG M H. Facet-dependent photocatalytic properties of Cu2O crystals probed by electron, hole and radical scavengers[J]. J.Mater. Chem. A, 2017, 5(29):15116-15123.
    [29] LIANG Y, SHANG L, BIAN T, et al. Shape-controlled synthesis of polyhedral 50-facet Cu2O microcrystals with high-index facets[J].Crystengcomm, 2012, 14(13):4431-4436.
    [30] HU F, ZOU Y Z, WANG L L, et al. Photostable Cu2O photoelectrodes fabricated by facile Zn-doping electrodeposition[J]. Int. J. Hydrogen.Energ., 2016, 41(34):15172-15180.
    [31] HERING K P, KANDZIA C, BENZ J, et al. Hydrogen induced mobility enhancement in RF sputtered Cu2O thin films[J]. J. Appl.Phys., 2016, 120(18):318-326.
    [32] HAN X, HE X X, WANG F, et al. Engineering an N-doped Cu2O@NC interface with long-lived photo-generated carriers for efficient photoredox catalysts[J]. J. Mater. Chem. A, 2017, 5(21):10220-10226.
    [33] ZHU H, DU M L, YU D L, et al. A new strategy for the surface-freeenergy-distribution induced selective growth and controlled formation of Cu2O-Au hierarchical heterostructures with a series of morphological evolutions[J]. J. Mater. Chem. A, 2013, 1(3):919-929.
    [34] DENG X L, WANG C G, ZHOU E, et al. One-step solvothermal method to prepare Ag/Cu2O composite with enhanced photocatalytic properties[J]. Nanoscale. Res. Lett., 2016, 11(1):29-41.
    [35] LI L L, CHEN X B, WU Y E, et al. Pd-Cu2O and Ag-Cu2O hybrid concave nanomaterials for an effective synergistic catalyst[J]. Angew.Chem. Int. Ed., 2013, 52(42):11049-11053.
    [36] MOUSAVI-KAMAZANI M, ZARGHAMI Z, RAHMATOLAHZADEH R, et al. Solvent-free synthesis of Cu-Cu2O nanocomposites via green thermal decomposition route using novel precursor and investigation of its photocatalytic activity[J]. Adv. Powder. Technol., 2017, 28(9):2078-2086.
    [37] TAO S, YANG M, CHEN H H, et al. Microfluidic synthesis of Ag@Cu2O core-shell nanoparticles with enhanced photocatalytic activity[J]. J. Colloid. Interf. Sci., 2017, 486:16-26.
    [38] YIN H Y, WANG X L, WANG L, et al. Cu2O/TiO2heterostructured hollow sphere with enhanced visible light photocatalytic activity[J].Mater. Res. Bull., 2015, 72:176-183.
    [39] SHAO Z F, WANG Y, ZHANG Y F, et al. Electrochemical deposition synthesis of ZnO-NA/Cu2O-NPs type-II hierarchical heterojunction for enhanced photoelectrochemical degradation of methyl orange(MO)[J]. J. Photoch. Photobio. A, 2018, 364:657-670.
    [40] CUI G L, XIAO C H, ZHANG P H, et al. In situ electrodeposition of a Cu2O/SnO2periodical heterostructure film for photosensor applications[J]. Phys. Chem. Chem. Phys., 2016, 18(16):10918-10923.
    [41] SONG J H, RODENBOUGH P P, XU W Q, et al.Reduction of nanoCu2O:crystallite size dependent and the effect of nano-ceria support[J]. J. Phys. Chem. C, 2015, 119(31):17667-17672.
    [42] CUI W Q, AN W J, LIU L, et al. Novel Cu2O quantum dots coupled flower-like BiOBr for enhanced photocatalytic degradation of organic contaminant[J]. J. Hazard. Mater., 2014, 280:417-427.
    [43] WANG L X, ZHAO F, HAN Q, et al. Spontaneous formation of Cu2Og-C3N4core–shell nanowires for photocurrent and humidity responses[J]. Nanoscale, 2015, 7(21):9694-9702.
    [44] LIU L, LIN S L, HU J S, et al. Plasmon-enhanced photocatalytic properties of nano Ag@AgBr on single-crystalline octahedral Cu2O(111)microcrystals composite photocatalyst[J]. Appl. Surf. Sci., 2015,330(3):94-103.
    [45] CAO J, LI J C, LIU L, et al. One-pot synthesis of novel Fe3O4/Cu2O/PANI nanocomposites as absorbents in water treatment[J]. J. Mater.Chem. A, 2014, 2(21):7953-7959.
    [46] DUBALE A A, TAMIRAT A G, CHEN H M, et al. A highly stable CuS and CuS-Pt modified Cu2O/CuO heterostructure as an efficient photocathode for the hydrogen evolution reaction[J]. J. Mater. Chem. A,2016, 4(6):2205-2216.
    [47] LI H T, LIU R H, LIU Y, et al. Carbon quantum dots/Cu2O composites with protruding nanostructures and their highly efficient(near)infrared photocatalytic behavior[J]. J. Mater. Chem., 2012, 22(34):7470-17475.
    [48] ZHOU X M, NIE H G, YAO Z, et al. Facile synthesis of nanospindlelike Cu2O/straight multi-walled carbon nanotube hybrid nanostructures and their application in enzyme-free glucose sensing[J]. Sens. Actuators B, 2012, 168:1-7.
    [49] PU Y C, CHOU H Y, KUO W S, et al. Interfacial charge carrier dynamics of cuprous oxide-reduced graphene oxide(Cu2O-rGO)nanoheterostructures and their related visible-light-driven photocatalysis[J]. Appl. Catal. B:Environ., 2017, 204:21-32.
    [50] XU P, SHEN X, LUO L, et al. Preparation of TiO2/Bi2WO6nanostructured heterojunctions on carbon fibers as a weaveable visible-light photocatalyst/photoelectrode[J]. Environ. Sci.:Nano.,2018, 5(2):327-337.
    [51] GHOSH S, BERA S, BASU R N. Fabrication of Bi2S3/ZnO heterostructures:an excellent photocatalyst for visible-light-driven hydrogen generation and photoelectrochemical properties[J]. New J.Chem., 2018, 42(1):541-554.
    [52] ZHOU P, LE Z, XIE Y, et al. Studies on facile synthesis and properties of mesoporous CdS/TiO2, composite for photocatalysis applications[J].J. Alloy. Compd., 2017, 692:170-177.
    [53] CHAE B W, AMNA T, HASSAN M S, et al. CeO2-Cu2O composite nanofibers:synthesis, characterization photocatalytic and electrochemical application[J]. Adv. Powder. Technol., 2017, 28(1):230-235.
    [54] MEI J, ZHANG D P, LI N, et al. The synthesis of Ag3PO4/g-C3N4nanocomposites and the application in the photocatalytic degradation of bisphenol A under visible light irradiation[J]. J. Alloy. Compd.,2018, 749:715-723.
    [55] SHEN H Q, WANG J X, JIANG J H, et al. All-solid-state Z-scheme system of RGO-Cu2O/Bi2O3for tetracycline degradation under visiblelight irradiation[J]. Chem. Eng. J., 2017, 313:508-517.
    [56] ZOU X W, FAN H Q, TIAN Y M, et al. Synthesis of Cu2O/ZnO heteronanorod arrays with enhanced visible light-driven photocatalytic activity[J]. CrystEngComm, 2014, 16(6):1149-1157.
    [57] JOSHI S, IPPOLITO S J, SUNKARA M V. Convenient architectures of Cu2O/SnO2type II p-n heterojunctions and their application in visible light catalytic degradation of rhodamine B[J]. RSC Adv., 2016, 6(49):43672-43684.
    [58] LIU L, DING L, LIU Y G, et al. Enhanced visible light photocatalytic activity by Cu2O-coupled flower-like Bi2WO6structures[J]. Appl. Surf.Sci., 2016, 364:505-515.
    [59] MIN Z Y, WANG X P, LI Y P, et al. A highly efficient visible-lightresponding Cu2O/TiO2/g-C3N4photocatalyst for instantaneous discolorationsoforganicdyes[J].Mater.Lett.,2017,193:18-21.
    [60] LU Y, XU Y Y, WU Q, et al. Synthesis of Cu2O nanocrystals/TiO2photonic crystal composite for efficient p-nitrophenol removal[J].Colloid. Surface A, 2018, 539:291-300.
    [61] LIU L, DING L, AN W J, et al. Cu2O NPs decorated BiPO4photocatalyst for enhanced organic contaminant degradation under visible light irradiation[J]. RSC Adv., 2016, 6(35):29202-29209.
    [62] FENG H B, LI Y P, LUO D M, et al. Novel visible-light-responding InVO4-Cu2O-TiO2ternary nanoheterostructure:preparation and photocatalytic characteristics[J]. Chinese J. Catal., 2016, 37(6):855-862.
    [63] ZHANG W W, WANG B S, HAO C C, et al. Au/Cu2O Schottky contact heterostructures with enhanced photocatalytic activity in dye decomposition and photoelectrochemical water splitting under visible light irradiation[J]. J. Alloy. Compd., 2016, 684:445-452.
    [64] LI Z, DAI K, ZHANG J F, et al. Facile synthesis of novel octahedral Cu2O/Ag3PO4composite with enhanced visible light photocatalysis[J].Mater. Lett., 2017, 20:648-651.
    [65] BAO Y C, CHEN K Z. A novel Z-scheme visible light driven Cu2O/Cu/g-C3N4photocatalyst using metallic copper as a charge transfer mediator[J]. Mol. Catal., 2017, 235:187-195.
    [66] WANG D, PAN X Y, WANG G T, et al. Improved propane photooxidation activities upon nano Cu2O/TiO2heterojunction semiconductors at room temperature[J]. RSC Adv., 2015, 5(28):22038-22043.
    [67] LI J Q, YUAN H, ZHU Z F. Fabrication of Cu2O/Au/BiPO4Z-scheme photocatalyst to improve the photocatalytic activity under solar light[J].J. Mol. Catal. A-Chem., 2015, 410:133-139.
    [68] HE J, SHAO D W, ZHENG L C, et al. Construction of Z-scheme Cu2O/Cu/AgBr/Ag photocatalyst with enhanced photocatalytic activity and stability under visible light[J]. Appl. Catal. B:Environ., 2017, 203:917-926.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700