基于瞬时测频原理的高机动隐身目标检测算法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High maneuvering stealth target detection algorithm based on IFM
  • 作者:王卓 ; 郑学合 ; 常晓兰
  • 英文作者:WANG Zhuo;ZHENG Xuehe;CHANG Xiaolan;Beijing Institute of Remote Sensing Equipment;Defense Technology Academy of China Aerospace Science and Industry Corporation Limited;
  • 关键词:长时间相参积累 ; 加速度盲估计 ; 瞬时测频 ; 高机动隐身目标 ; 导引头
  • 英文关键词:long time phase-coherent accumulation;;the blind estimation of acceleration;;instantaneous frequency measurement(IFM);;high maneuvering stealth target;;seeker
  • 中文刊名:XTYD
  • 英文刊名:Systems Engineering and Electronics
  • 机构:北京遥感设备研究所;中国航天科工防御技术研究院;
  • 出版日期:2019-02-21 14:04
  • 出版单位:系统工程与电子技术
  • 年:2019
  • 期:v.41;No.476
  • 语种:中文;
  • 页:XTYD201905010
  • 页数:7
  • CN:05
  • ISSN:11-2422/TN
  • 分类号:69-75
摘要
高速、高机动隐身飞行器严重压缩了防空导弹雷达导引头的探测威力,而通过增加相参积累时间提高导引头灵敏度是解决此问题的有效技术途径之一。提出一种基于瞬时测频原理的长时间相参积累算法,用于脉冲多普勒雷达导引头对隐身目标的检测。该算法将电子对抗领域成熟的瞬时测频技术创新应用于雷达导引头的目标检测过程中,通过对弹目相对加速度的盲估计,补偿回波信号中的二次项,使得因弹目相对加速度产生的频谱展宽问题得以解决。补偿后的回波信号相参积累时间得以增加,这使得导引头检测灵敏度随之提高。仿真条件下,此算法将导引头的截获灵敏度提高了12.5dB,作用距离提升一倍有余。此算法还可以推广应用到弹目加加速度或者更高次项存在的情况。
        The high speed and high maneuvering stealth aircrafts severely compress the detection power of the radar seeker.It is one of the effective ways to solve this problem by increasing the time of phase-coherent accumulation to improve the sensitivity of the seeker.A long time phase-coherent accumulation algorithm based on instantaneous frequency measurement(IFM)is proposed to detect the stealth target for pulse Doppler radar seeker.This algorithm is applied to the target detection of radar seeker with the mature IFM technology in the field of electronic countermeasures.Through the blind estimation of the relative acceleration between missiles and targets and compensating the quadratic term in the echo signal,the spectrum broadening problem caused by the relative acceleration can be solved.After compensation,the accumulation time of the echo signal is increased,which improves the detection sensitivity of the seeker.By the simulation condition,this algorithm increases the intercept sensitivity of the seeker by 12.5 dB,which means the range is increased by more than one time.This algorithm can also be applied in the situation where higher order accelerated velocity exists.
引文
[1]代红,何丹.飞机隐身与雷达反隐身技术综述[J].电子信息对抗技术,2016,31(6):40-43.DAI H,HE D.A review of aircraft stealth and radar anti-stealth technology[J].Electronic Information Warfare Technology,2016,31(6):40-43.
    [2]甘杰,张杰.隐身目标探测技术现状与发展研究[J].现代雷达,2016,38(8):13-16.GAN J,ZHANG J.A study on situation and development of stealth target detection technology[J].Modern Radar,2016,38(8):13-16.
    [3]GRANT R.Review of US stealth aircraft[J].International Aviation,2009(5):36-38.
    [4]孙子杰,毛根旺,栗金平.隐身技术在飞行器上的应用[J].重庆理工大学学报(自然科学),2011,25(2):106-111.SUN Z J,MAO G W,LI J P.Research application of stealth technique in aircrafts[J].Journal of Chongqing University of Technology(Natural Science),2011,25(2):106-111.
    [5]李希同.外形隐身飞机的电磁散射特性与SAR成像特性分析[D].南京:东南大学,2015.LI X T.The analysis of electromagnetic scattering characteristic of shape-stealth aircraft and SAR imaging characteristic[D].Nanjing:Southeast University,2015.
    [6]杨胜男,邵万仁,尚守堂,等.单边膨胀球面二元喷管雷达隐身修形研究[J].航空发动机,2016,42(5):55-62.YANG S N,SHAO W R,SHANG S T,et al.Study on radar stealth shaping for single expansion ramp with spherical 2-D nozzle[J].Aeroengine,2016,42(5):55-62.
    [7]THOMASSIN J M,JRME C,PARDOEN T,et al.Polymer/carbon based composites as electromagnetic interference(EMI)shielding materials[J].Materials Science&Engineering Reports,2013,74(7):211-232.
    [8]KONG L B,LI Z W,LIU L,et al.Recent progress in some composite materials and structures for specific electromagnetic applications[J].International Materials Reviews,2013,58(4):203-259.
    [9]QIN F,BROSSEAU C.A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles[J].Journal of Applied Physics,2012,111(6):061301-24.
    [10]KANG Y,CHU Z,ZHANG D,et al.Incorporate boron and nitrogen into graphene to make BCN hybrid nanosheets with enhanced microwave absorbing properties[J].Carbon,2013,61(11):200-208.
    [11]王涛,张峻铭,王鹏,等.吸波材料吸波机制及吸波剂性能优劣评价方法[J].磁性材料及器件,2016,47(6):7-13.WANG T,ZHANG J M,WANG P,et al.The absorption mechanism of radar absorber andperformance evaluation criterion of absorbent[J].Journal of Magnetic Materials and Devices,2016,47(6):7-13.
    [12]蔺国民,孙秦,李艳华,等.隐身飞机综述[J].航空制造技术,2005,30(9):73-76.LIN G M,SUN Q,LI Y H,et al.Survey on stealth aircraft[J].Aeronautical Manufacturing Technology,2005,30(9):73-76.
    [13]郦晓翔.雷达反隐身技术的发展及实现方法[J].电子工程师,2008,34(8):3-5.LI X X.An overview of radar anti-stealth technique development[J].Electronic Engineer,2008,34(8):3-5.
    [14]赵纯锋,徐子闻.定量分析雷达网反隐身能力的方法[J].空军雷达学院学报,2003,17(1):45-47.ZHAO C F,XU Z W.An approach to the quantitative analysis for anti-stealth capability of radar net[J].Journal of Air Force Radar Academy,2003,17(1):45-47.
    [15]李毅,张光甫,梁步阁,等.高功率冲激雷达反隐身机理研究[J].现代雷达,2007,29(8):40-43.LI Y,ZHANG G F,LIANG B G,et al.Study of anti-stealth mechanism of high power impulse[J].Modern Radar,2007,29(8):40-43.
    [16]LU Z J,GUAN R,LI X Y,et al.A practical design of X-band receiver front-end in 65-nm CMOS[J].Chinese Journal of Electronics,2016,25(3):413-417.
    [17]GE Q,LIU X Y,ZHENG Y K,et al.A flat gain GaN MMICpower amplifier for X band application[J].Journal of Semiconductors,2014,35(12):125004-1-125004-5.
    [18]ZHU D D,CHENG Z Q,YAN G G,et al.An ultra-wideband power amplifier based on GaN HEMT[C]∥Proc.of the International Conference on Communication Technology,2015:537-539.
    [19]来晋明,罗嘉,由利人,等.基于GaN HEMT的0.8~4GHz宽带平衡功率放大器[J].半导体技术,2015,40(1):44-49.LAI J M,LUO J,YOU L R,et al.Design of 0.8-4 GHz broadband banlanced power amplifier based on GaN HEMT[J].Chinese Semiconductor Technology,2015,40(1):44-49.
    [20]BERRACHED C,BOUW D,CAMIADE M,et al.Wideband high efficiency high power GaN amplifiers using MIC and quasi-MMIC technologies[C]∥Proc.of the Microwave Integrated Circuits Conference,2013:424-427.
    [21]LUO X,YUE C,ZHOU L,et al.Design of a Ka-band GaNHEMT power amplifier based on simulation[C]∥Proc.of the International Workshop on Microwave&Millimeter Wave Circuits&System Technology,2013:456-459.
    [22]王默然,宋振兴,方建洪.X波段85W功率放大模块微带电路设计[J].集成电路应用,2014,40(10):37-39.WANG M R,SONG Z X,FANG J H.Design of X-band85W power amplifier microstrip circuit[J].Application of Integrated Circuits,2014,40(10):37-39.
    [23]CARLSON B D,EVANS E D,WILSON S L.Search radar detection and track with the Hough transform,part I:system concept[J].IEEE Trans.on Aerospace and Electronic Systems,1994,30(1):102-108.
    [24]CARLSON B D,EVANS E D,WILSON S L.Search radar detection and track with the Hough transform,part II:detection statistic[J].IEEE Trans.on Aerospace and Electronic Systems,1994,30(1):109-115.
    [25]CARLSON B D,EVANS E D,AND WILSON S L.Search radar detection and track with the Hough transform,part III:detection performance with binary integration[J].IEEE Trans.on Aerospace and Electronic Systems,1994,30(1):116-125.
    [26]PERRY R P,DIPIETRO R C,FANTE R L.Coherent integration with range migration using keystone formatting[C]∥Proc.of the Radar Conference,2007:863-868.
    [27]ZHANG S S,ZENG T,LONG T,et al.Dim target detection based on keystone transform[C]∥Proc.of the Radar Conference,2005:889-894.
    [28]LI Y,ZENG T,LONG T,et al.Range migration compensation and Doppler ambiguity resolution by keystone transform[C]∥Proc.of the CIE International Conference on Radar,2006:1-4.
    [29]XU J,YU J,PENG Y N,et al.Radon-Fourier transform for radar target detection(I):generalized Doppler filter bank[J].IEEE Trans.on Aerospace and Electronic Systems,2011,47(2):1186-1202.
    [30]XU J,YU J,PENG Y N,et al.Radon-Fourier transform(RFT)for radar target detection(II):performance analysis and sidelobe suppression[J].IEEE Trans.on Aerospace and Electronic Systems,2011,47(4):2473-2489.
    [31]XU J,YU J,PENG Y N,et al.Radon-Fourier transform(RFT)for radar target detection(III):optimality and fast implementations[J].IEEE Trans.on Aerospace and Electronic Systems,2012,48(2):991-1004.
    [32]陈晓威,李彦志,何文波.瞬时测频系统测LFM信号载频误差分析[J].现代电子技术,2015,38(19):28-32.CHEN X W,LI Y Z,HE W B.Analysis for carrier frequency error in LFM signal measurement with IFM system[J].Modern Electronics Technique,2015,38(19):28-32.
    [33]薛明军,孔宪辉,张红梅.一种比相法瞬时测频接收机的工程实现[J].电子科技,2014,27(7):103-108.XUE M J,KONG X H,ZHANG H M.An engineering realization of an instantaneous frequency measurement receiver by the phase comparison method[J].Electric Science and Technology,2014,27(7):103-108.
    [34]凌祥,张树森.一种基于时间数字转换器的瞬时测频技术[J].电子测量技术,2016,39(11):16-25.LING X,ZHANG S S.The technology of instantaneous frequency measurement based on TDC[J].Electronic Measurement Technology,2016,39(11):16-25.
    [35]刘东华,王元钦,袁嗣杰,等.基于瞬时测频的PCM/FM信号解调方法研究[J].系统仿真学报,2005,17(10):2463-2466.LIU D H,WANG Y Q,YUAN S J,et al.Research on Method of Demodulation for PCM/FM Signal Based on Instantaneous Frequency Measurement[J].Journal of System Simulation,2005,17(10):2463-2466.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700