渗流作用下富水砂层双排管冻结壁形成规律模型试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Model test research of formation law of double-row-pipe freezing wall in water rich sand layer under seepage
  • 作者:李方政 ; 丁航 ; 张绪忠
  • 英文作者:LI Fangzheng;DING Hang;ZHANG Xuzhong;Branch Institute of Mine Construction,CCRI;Beijing Coal Mine Construction Company Ltd.;Tiandi Science and Technology Co.,Ltd.;
  • 关键词:土力学 ; 渗流 ; 富水砂层 ; 双排管冻结 ; 冻结壁 ; 模型试验
  • 英文关键词:soil mechanics;;seepage;;water rich sand layer;;double-row-pipe freezing;;freezing wall;;model test
  • 中文刊名:YSLX
  • 英文刊名:Chinese Journal of Rock Mechanics and Engineering
  • 机构:煤炭科学研究总院建井研究分院;北京中煤矿山工程有限公司;天地科技股份有限公司;
  • 出版日期:2018-11-07 13:39
  • 出版单位:岩石力学与工程学报
  • 年:2019
  • 期:v.38;No.349
  • 基金:国家自然科学基金资助项目(51774183);; 国家重点研发计划(2016YFC0600904)~~
  • 语种:中文;
  • 页:YSLX201902017
  • 页数:10
  • CN:02
  • ISSN:42-1397/O3
  • 分类号:175-184
摘要
针对渗流地层中冻结壁长时间不交圈的难题,根据多孔介质传热理论与达西定律建立渗流场与冻结温度场耦合控制方程,得出两者相互作用机制;基于相似理论,建立渗流作用下梅花型布置双排管冻结模型试验系统,对渗流地层中冻结壁形成的主要影响因素进行正交试验研究,并在相同条件下进行单排管冻结对比试验。研究结果表明:双排管冻结时,地下水流速是影响上游冻结壁厚度的首要因素;孔间距是影响冻结壁交圈时间的首要因素;盐水温度是影响下游冻结壁厚度与冻结壁平均温度的首要因素;在本试验条件下,地下水流速5~25 m/d时,双排管冻结时上、下游冻结壁较单排管冻结时分别增厚62.6%~151.8%,3.7%~33.8%;交圈时间缩短7.1%~91%,冻结壁平均温度降低了12.1%~103.9%;并对冻结壁交圈时间与地下水流速之间进行非线性回归,得出冻结壁在不同条件下能交圈的极限流速;最后提出渗流作用下冻结工程对策,为类似冻结工程设计施工提供参考。
        Aiming at the problem of unclosed freezing wall in seepage fields,a coupled control equation of seepage field and freezing temperature field was established based on the heat transfer theory of porous media and Darcy′s law,and the interaction mechanism between the two fields was discussed. According to the similarity theory,a model test system for the frozen double-row-pipe with plum blossom arrangement under percolation was built,with which a orthogonal test aiming at main factors affecting the formation of frozen wall in high velocity percolation layers was conducted. For comparison,another test with frozen single-rowed pipe was carried out subsequently. The results show that,for double-rowed pipe freezing,the groundwater velocity,the hole spacing and the salt water temperature are,respectively,the primary factors affecting the thickness of the upstream frozen wall,the frozen wall intersecting time,and the downstream frozen wall thickness and average temperature. It is also indicated that,when groundwater velocity ranges from 5 m/d to 25 m/d,the thicknesses of upstream and downstream frozen walls of double-rowed pipe freezing are respectively larger than those of single-rowed pipe freezing by 62.6%–151.8% and 3.7%–33.8%,and at the same time,the intersecting time and the average temperature of the frozen wall decrease by 7.1%–91% and 12.1%–103.9% respectively. The limit velocity of the frozen wall intersecting under different conditions was obtained based on the nonlinear regression between the frozen wall intersecting time and the groundwater velocity. Finally,effective countermeasures for frozen engineering under seepage were put forward,which provides a significant reference for the design and construction of similar frozen engineering.
引文
[1]李方政,夏明萍.基于指数积分函数的人工冻土温度场解析研究[J].东南大学学报:自然科学版,2004,34(4):469-473.(LI Fangzhang,XIA Mingping.Study on analytical solution of temperature field of artificial frozen soil by exponent 2 integral function[J].Journal of south east university:Natural Science,2004,34(4):469-473.(in Chinese))
    [2]程桦,姚直书,张经双,等.人工水平冻结法施工隧道冻胀与融沉效应模型试验研究[J].土木工程学报,2007,40(10):80-85.(CHENG Hua,YAO Zhishu,ZHANG Jingshuang,et al.A model test study on the effect of freeze heaving and thaw subsidence for tunnel construction with artificial horizontal groundfreezing[J].China Civil Engineering Journal,2007,40(10):80-85.(in Chinese))
    [3]李方政,楼根达,余志松,等.基于蠕变效应的穿越隧道冻结帷幕开挖与支护三维数值模拟[J].岩土力学,2005,26(增):121-125.(LI Fangzheng,LOU Genda,YU Zhisong,et al.3D creep numerical simulation of excavation and support in frozen soil curtain wall of crossing tunnel[J].Rock and Soil Mechanics,2005,26(Supp.):121-125.(in Chinese))
    [4]李方政.市政冻结技术的应用与展望[J].建井技术,2017,38(4):55-60.(LI Fangzheng.Application and prospect of freezing technology in municipal engineering[J].Mine Construction Technology,2017,38(4):55-60.(in Chinese))
    [5]杨平,皮爱如.高流速地下水流地层冻结壁形成的研究[J].岩土工程学报,2001,23(2):167-171.(YANG Ping,PU Airu.Study on the effects of large ground water flow velocity on the formation of frozen wall[J].Chinese Journal of Geotechnical Engineering,2001,23(2):167-171.(in Chinese))
    [6]LAI Y M,LIU S Y,WU Z W,et al.Numerical simulation for the coupled problem of temperature and seepage fields in dams located in cold area[J].Journal of Hydraulic Engineering,2001,32(8):26-31.
    [7]周晓敏,王梦恕,张绪忠.渗流作用下地层冻结壁形成的模型试验研究[J].煤炭学报,2005,30(2):196-201.(ZHOU Xiaomin,WANGMengshu,ZHANG Xuzhong.Model test research on the formation of freezing wall in seepage ground[J].Journal of China Coal Society,2005,30(2):196-201.(in Chinese))
    [8]PIMENTEL E,PAPAKONSTANTINOU S,ANAGNOSTOU G.Numerical interpretation of temperature distributions from three ground freezing applications in urban tunnelling[J].Tunnelling and Underground Space Technology incorporating Trenchless Technology Research,2012,28(1):57-69.
    [9]高娟,冯梅梅,杨维好.渗流作用下裂隙岩体冻结温度场分布规律研究[J].采矿与安全工程学报,2013,30(1):68-73.(GAO Juan,FENG Meimei,YANG Weihao.Research on distribution law of frozen temperature field of fractured rock mass with groundwater seepage[J].Journal of Mining and Safety Engineering,2013,30(1):68-73.(in Chinese))
    [10]冯梅梅,杨维好,高娟.含裂隙构造渗流地层人工冻结壁发育及影响因素分析[J].采矿与安全工程学报,2014,31(6):976-981.(FENG Meimei,YANG Weihao,GAO Juan.An analysis of the development of artificial freezing wall in seepage strata with fractured structure and its influencing factors[J].Journal of Mining and Safety Engineering,2014,31(6):976-981.(in Chinese))
    [11]VITEL M,ROUABHI A,TIJANI M,et al.Modeling heat and mass transfer during ground freezing subjected to high seepage velocities[J].Computers and Geotechnics,2016,73:1-15.
    [12]VITEL M,ROUABHI A,TIJANI M,et al.Modeling heat transfer between a freeze pipe and the surrounding ground during artificial ground freezing activities[J].Computers and Geotechnics,2015,63:99-111.
    [13]李方政,罗富荣,韩玉福,等.复杂条件下地铁联络通道冻结壁不交圈原因的分析及治理[J].工业建筑,2015,45(11):187-190.(LIFangzheng,LUO Furong,HAN Yufu,et al.Cause analysis and counter measure research for unclosed freezing wall of subway contact passage under complex conditions[J].Industrial Construction,2015,45(11):187-190.(in Chinese))
    [14]周家作,李东庆,房建宏.开放系统下饱和正冻土热质迁移的数值分析[J].冰川冻土,2011,33(4):791-795.(ZHOU Jiazuo,LIDongqing,FANG Jianhong,et al.Numerical analysis of heat and mass transfer in saturated freezing soil in an open system[J].Journal of Glaciology and Geocryology,2011,33(4):791-795.(in Chinese))
    [15]刘建刚,刘泉,周冬冬,等.地下水横向水平流速对人工水平冻结壁形成的影响[J].应用基础与工程科学学报,2017,25(2):258-265.(LIU Jiangang,LIU Quan,ZHOU Dongdong,et al.Influence of groundwater transverse horizontal flow velocity on the formation of artificial horizontal freezing wall[J].Journal of Basic Science and Engineering,2017,25(2):258-265.(in Chinese))
    [16]王朝晖,朱向荣,曾国熙,等.动水条件下土层液氮冻结模型试验的研究[J].浙江大学学报:工学版,1998,32(5):534-540.(WANGZhaohui,ZHU Xiangrong,ZENG Guoxi,et al.The experimental researches on the ground freezing with liquid nitrogen under water flowing[J].Journal of Zhejiang University:Natural Science,1998,32(5):534-540.(in Chinese))
    [17]崔广心.相似理论与模型试验[M].徐州:中国矿业大学出版社,1990.(CUI Guangxin.Similarity theory and model test[M].Xuzhou:China University of Mining and Technology Press,1990.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700