基于虚拟样机的前轮自激摆振仿真与悬架参数优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of Front-wheel Self-excited Shimmy and Optimization of Suspension Parameters based on a Virtual Prototype
  • 作者:孙晴 ; 谢小平
  • 英文作者:SUN Qing;XIE Xiaoping;State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University;
  • 关键词:振动与波 ; 自激摆振 ; 虚拟样机 ; 悬架参数 ; Hopf分岔 ; 多参数优化
  • 英文关键词:vibration and wave;;self-excited shimmy;;virtual prototype;;suspension parameters;;Hopf bifurcation;;multi-parameter optimization
  • 中文刊名:ZSZK
  • 英文刊名:Noise and Vibration Control
  • 机构:湖南大学汽车车身先进设计制造国家重点实验室;
  • 出版日期:2019-06-18
  • 出版单位:噪声与振动控制
  • 年:2019
  • 期:v.39
  • 语种:中文;
  • 页:ZSZK201903012
  • 页数:7
  • CN:03
  • ISSN:31-1346/TB
  • 分类号:62-68
摘要
汽车系统参数匹配不合理会诱发自激摆振,对操纵稳定性有很大的危害。其为底盘系统一种非线性特征且对于相关参数非常敏感并难以再现。以某型乘用车为样车,建立精细虚拟样机模型再现其自激摆振现象。结合Hopf分岔理论进一步系统地分析了前麦弗逊式悬架下摆臂臂长及橡胶衬套6向刚度参数对样车自激摆振幅值和速度分岔特性的影响。依据多参数分析结果,选择影响程度较大的参数进行优化设计,使摆振幅值降低21.56%,同时减小摆振速度区间,为合理设计悬架参数,有效抑制自激摆振现象提供理论依据。
        Vehicle's self-excited shimmy is usually induced by mismatch of system parameters, which has a great harm to vehicle control stability. It is a nonlinear characteristic of chassis system, very sensitive to the relevant parameters and hard to reproduce. In this paper, with a passenger car as a sample, a refined virtual prototype model is established to reproduce the phenomenon of self-excited shimmy. Based on the Hopf bifurcation theory, the influence of the lower arm length of the front Mcpherson suspension and the six-direction stiffness parameters of the rubber bushing on the shimmy amplitude and velocity bifurcation characteristics of the vehicle is analyzed. According to the results of multi-parameter analysis, the parameters with greater influence are chosen to optimize the design. Consequently, the amplitude of the shimmy is reduced by 21.56 %, and the shimmy speed interval is reduced. This study has provided a theoretical basis for reasonably selecting suspension parameters and effectively restraining the phenomenon of self-excited shimmy.
引文
[1]刘延柱,陈立群.非线性振动[M].北京:高等教育出版社,2001.
    [2] PACEJKA H B. Analysis of the shimmy phenomenon[C].Proceedings of the Institution of Mechanical Engineers Automobile Division, 1965, 180:251-268.
    [3] STUART J, CASSARA S, CHAN B, et al. Recent experimental and simulation efforts to mitigate wobble and shimmy in commercial line haul vehicles[J]. SAE International Journal of Commercial Vehicles, 2014, 7(2):366-380.
    [4]杨树凯,卢荡,张海涛,等.前轮摆振机理分析[J].科学技术与工程,2015,15(32):221-223.
    [5]魏道高,蒋艮生.主销后倾角对独立悬架汽车自激摆振极限环特性的影响[J].农业机械学报,2012,43(12):5-10.
    [6]张磊,卢剑伟,姜俊昭,等.计及运动副间隙的独立悬架汽车摆振动力学建模与分析[J].汽车工程,2016,38(12):1477-1482.
    [7]王威,陈军,宋玉玲.轿车转向系与前悬架耦合动力学特性研究[J].农业机械学报,2013,44(12):17-21.
    [8]李中好.双横臂独立悬架前轮摆振与陀螺效应的动力学研究[J].汽车工程,2017,39(6):698-701.
    [9] HACKERT P B. Simulation and investigation of shimmy on a light truck independent front suspension[C]//International Truck&Bus Meeting&Exposition, 1993.
    [10]余志生.汽车理论[M]. 5版.北京:机械工业出版社,2009.
    [11]肖闯,殷智宏.单转向轮摆振非线性动力学研究[J].中国机械工程,2013,24(8):1131-1135.
    [12]张宁,殷国栋,陈南,等.车辆动力学中的摆振问题研究现状综述[J].机械工程学报,2017,53(14):16-28.
    [13]贾长建.基于ADAMS的麦弗逊式悬架运动学仿真分析与优化设计[D].长安大学,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700