三叶鬼针草内生细菌群体多样性及重金属耐受和吲哚乙酸产生潜力
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Diversity,heavy-metal tolerance and indoleacetic acid production of bacterial endophytes in Bidens pilosa
  • 作者:胡泽瑞 ; 刘媛 ; 彭长连 ; 李淑彬
  • 英文作者:HU Ze-Rui;LIU Yuan;PENG Chang-Lian;LI Shu-Bin;College of Life Sciences, South China Normal University;
  • 关键词:三叶鬼针草 ; 内生细菌 ; 种群多样性 ; 重金属耐受 ; IAA产生
  • 英文关键词:Bidens pilisa L.;;Bacterial endophytes;;Population diversity;;Heavy metal tolerance;;IAA production
  • 中文刊名:WSWT
  • 英文刊名:Microbiology China
  • 机构:华南师范大学生命科学学院;
  • 出版日期:2018-09-17 19:33
  • 出版单位:微生物学通报
  • 年:2019
  • 期:v.46
  • 基金:国家重点研収计划(2017YFC1200105)~~
  • 语种:中文;
  • 页:WSWT201901004
  • 页数:13
  • CN:01
  • ISSN:11-1996/Q
  • 分类号:35-47
摘要
【背景】定殖于植物的多样内生细菌与宿主生长和抗逆能力密切相关。三叶鬼针草(Bidenspilosa L.)极具入侵性且抗逆性强,但目前该植物内生细菌相关研究报道极少。【目的】探究三叶鬼针草内生细菌群体多样性,筛选获得兼具重金属耐受性及吲哚乙酸(Indoleacetic acid,IAA)产生潜力的内生细菌菌株。【方法】采用MiSeq高通量方法分析三叶鬼针草内生细菌群体多样性,可培养方法测定内生细菌菌株对重金属Pb、Cd、Ni、Hg的耐受能力及产生IAA的潜力。【结果】从三叶鬼针草内生细菌群体中共测得4 031个操作分类单元(OTU),可归属于25个门51个纲76个目182个科及536个属。属级水平上,三叶鬼针草根、茎、叶和种子中分别以肠杆菌属(Enterobacter)、不动杆菌属(Acinetobacter)、鞘脂单胞菌属(Sphingomonas)及假单胞菌属(Pseudomonas)丰度最高,伯克氏菌属(Burkholderia)、甲基杆菌属(Methylobacterium)、假单胞菌属、泛菌属(Pantoea)次之;从三叶鬼针草分离得到34株内生细菌,所有菌株均至少对1种测试的重金属具有耐受性。其中,GF-1、GF-8、YF-1、YF-2、JF-1、GF-2和JF-8这7个菌株能够产生IAA,其产率为57.48-312.22μg/mL;基于16S rRNA基因序列分析,初步鉴定菌株GF-1、GF-8、YF-1、YF-2、JF-1为芽孢杆菌(Bacillus spp.),菌株GF-2为假单胞菌(Pseudomonas sp.),菌株JF-8为伯克氏菌(Burkholderia sp.)。【结论】三叶鬼针草内生细菌群体具有丰富的种群多样性。三叶鬼针草内生细菌菌株GF-1、GF-8、YF-1、YF-2、JF-1、GF-2和JF-8兼具多重金属耐受性及高产IAA潜力,是重金属复合污染土壤生物修复的优良候选菌株。
        [Background] Plants are inhabited by diverse bacterial endophytes that are closely related to the growth and stress tolerance of their hosts. Bidens pilisa L. is a highly invasive plant species with strong stress tolerance. However, up to date, there is limited literature reporting the research involving the bacterial endophytes of the plant species. [Objective] To investigate and characterize the diversity of bacterial endophytes community of B. pilisa, and to obtain the bacterial isolates from the plant species with both potential of heavy metal-tolerance and indoleacetic acid(IAA) production. [Methods] The diversity of bacterial endophytes community was analyzed by using MiSeq high-throughput sequencing method. The tolerance ability to heavy metals Pb, Cd, Ni, and Hg, as well as the IAA-producing ability of bacterial endophytes were evaluated by using culture-dependent method. [Results] We recovered a total of 4 031 distinct operational taxonomic units from the total bacterial endophytes community of B. pilosa, which could be affiliated with 25 distinct bacterial phyla, 51 distinct bacterial classes, 76 distinct bacterial orders, 182 distinct bacterial families, and 536 distinct bacterial genera. At the genus level, the most dominant bacterial genera detected from the root, stem, leaf, and seed of B. pilosam were Enterobacter, Acinetobacter, Sphingomonas, and Pseudomonas, respectively, followed by Burkholderia, Methylobacterium, Pseudomonas, and Pantoea. Using culture-dependent method, we obtained 34 bacterial isolates from the internal tissues of B. pilisa and all obtained strains showed the tolerance at least to one tested heavy metal. Seven strains(numbered GF-1, GF-8, YF-1, YF-2, JF-1, GF-2, JF-8, respectively) could produce IAA with IAA yields varying in the ranging from 57.48-312.22 μg/mL. Based on 16 S rRNA gene sequence analysis, the 7 IAA-producing strains were identified, and strains GF-1, GF-8, YF-1, YF-2, JF-1 as Bacillus spp., strain GF-2 as Pseudomonas sp., strain JF-8 as Burkholderia sp. [Conclusion] The bacterial endophytes community of B. pilosa has high population diversity. Bacterial endophytes strains GF-1, GF-8, YF-1, YF-2, JF-1, GF-2, and JF-8 obtained from B. pilosa show not only multi-heavy metals tolerance also high IAA production, being good candidates used as bio-inoculation agent for bioremediation of heavy metal-contaminated soil.
引文
[1]Verma SK,Kingsley K,Bergen M,et al.Bacterial endophytes from rice cut grass(Leersia oryzoides L.)increase growth,promote root gravitropic response,stimulate root hair formation,and protect rice seedlings from disease[J].Plant and Soil,2018,422(1/2):223-238
    [2]Chebotar VK,Malfanova NV,Shcherbakov AV,et al.Endophytic bacteria in microbial preparations that improve plant development(review)[J].Applied Biochemistry and Microbiology,2015,51(3):271-277
    [3]Yu J,Yu ZH,Liu XB,et al.Diversity and growth promoting effects of endophytic bacteria in plant roots[J].Chinese Agricultural Science Bulletin,2015,31(13):169-175(in Chinese)喻江,于镇华,刘晓冰,等.植物根组织内生细菌多样性及其促生作用[J].中国农学通报,2015,31(13):169-175
    [4]Ruan DS,Zeng JH,Chao YQ,et al.Role of endophytes in plant tolerance to heavy metal stress[J].Microbiology China,2016,43(12):2700-2706(in Chinese)阮迪申,曾加会,晁元卿,等.重金属胁迫下内生菌对宿主植物的解毒机制[J].微生物学通报,2016,43(12):2700-2706
    [5]Yan XL,Shou HY,Ma JS.The problem and status of the alien invasive plants in China[J].Plant Diversity and Resources,2012,34(3):287-313(in Chinese)闫小玱,寿海洋,马金双.中国外来入侵植物研究现状及存在的问题[J].植物分类与资源学报,2012,34(3):287-313
    [6]Ricciardi A,Blackburn TM,Carlton JT,et al.Invasion science:a horizon scan of emerging challenges and opportunities[J].Trends in Ecology&Evolution,2017,32(6):464-474
    [7]White JF,Kingsley KI,Kowalski KP,et al.Disease protection and allelopathic interactions of seed-transmitted endophytic Pseudomonas of invasive reed grass(Phragmites australis)[J].Plant and Soil,2018,422(1/2):195-208
    [8]Li H,Liao D,Su JQ,et al.Diversity and function of endophytic bacteria in roots of exotic plant Spartina alterniflora[J].Chinese Journal of Applied and Environmental Biology,2014,20(5):856-862(in Chinese)李虎,廖丹,苏建强,等.外来种互花米草根内细菌多样性及功能[J].应用与环境生物学报,2014,20(5):856-862
    [9]Aires T,Serr?o EA,Engelen AH.Host and environmental specificity in bacterial communities associated to two highly invasive marine species(Genus Asparagopsis)[J].Frontiers in Microbiology,2016,7:559.DOI:10.3389/fmicb.2016.00559
    [10]He B,Li RY,Luo MY,et al.Effects of Bidens pilosa of invasive plant on soil ecological system at different developmental stages[J].Southwest China Journal of Agricultural Sciences,2013,26(5):1953-1956(in Chinese)何兵,李睿玉,罗曼元,等.入侵植物三叶鬼针草不同収育期对土壤生态系统的影响[J].西南农业学报,2013,26(5):1953-1956
    [11]Yan J,Zhang XY,Chen X,et al.Effects of rhizosphere soil microorganisms and soil nutrients on competitiveness of Bidens pilosa with different native plants[J].Biodiversity Science,2016,24(12):1381-1389(in Chinese)闫静,张晓亚,陈雪,等.三叶鬼针草与不同本地植物竞争对土壤微生物和土壤养分的影响[J].生物多样性,2016,24(12):1381-1389
    [12]Sun YB,Zhou QX,Wang L,et al.Cadmium tolerance and accumulation characteristics of Bidens pilosa L.as a potential Cd-hyperaccumulator[J].Journal of Hazardous Materials,2009,161(2/3):808-814
    [13]Chen JW,Sun YM,Wang FY,et al.Induction and accumulation of cadmium and lead by hairy root of Bidens pilosa[J].Acta Scientiae Circumstantiae,2015,35(5):1596-1602(in Chinese)谌金吾,孙一铭,王凤英,等.三叶鬼针草毛状根的诱导及其对重金属Cd、Pb蓄积[J].环境科学学报,2015,35(5):1596-1602
    [14]Cole JR,Chai B,Marsh TL,et al.The ribosomal database project(RDP-II):previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy[J].Nucleic Acids Research,2003,31(1):442-443
    [15]Claesson MJ,O’Sullivan O,Wang Q,et al.Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine[J].PLoS One,2009,4(8):e6669
    [16]Bian GK,Zhang YJ,Qin S,et al.Isolation and biodiversity of heavy metal tolerant endophytic bacteria from halotolerant plant species located in coastal shoal of Nantong[J].Acta Microbiologica Sinica,2011,51(11):1538-1547(in Chinese)卞光凯,张越己,秦盛,等.南通沿海滩涂耐盐植物重金属抗性内生细菌的筛选及生物多样性[J].微生物学报,2011,51(11):1538-1547
    [17]Jiang CY.Screening of Heavy Metal-resistant strains and their biological characteristics and effects on the phytoremediation of soils contaminated with lead and cadmium[D].Nanjing:Master’s Thesis of Nanjing Agricultural University,2005(in Chinese)江春玉.重金属铅镉抗性菌株的筛选、生物学特性及其强化植物修复铅镉污染土壤的研究[D].南京:南京农业大学硕士学位论文,2005
    [18]Jiang XY,Gao JS,Xu FH,et al.Diversity of endophytic bacteria in rice seeds and their secretion of indole acetic acid[J].Acta Microbiologica Sinica,2013,53(3):269-275(in Chinese)姜晓宇,高菊生,徐凤花,等.水稻种子内生细菌多样性及其分泌植物生长素能力的测定[J].微生物学报,2013,53(3):269-275
    [19]Tong R.Study on antimicrobial and antioxidant activity of Bidens bipinnata extracts[D].Fujian:Master’s Thesis of Fujian Agriculture and Forestry University,2013(in Chinese)滕蓉.鬼针草提取物抑菌及抗氧化活性研究[D].福建:福建农林大学硕士学位论文,2013
    [20]Li HQ.Development on chemical composition and analysis method of Bidens[J].Shandong Chemical Industry,2017,46(3):46-47,49(in Chinese)李洪芹.鬼针草化学成分及分析方法研究迚展[J].山东化工,2017,46(3):46-47,49
    [21]Sun L,Qiu FB,Zhang XX,et al.Endophytic bacterial diversity in rice(Oryza sativa L.)roots estimated by 16SrDNA sequence analysis[J].Microbial Ecology,2008,55(3):415-424
    [22]Bodenhausen N,Horton MW,Bergelson J.Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana[J].PLoS One,2013,8(2):e56329
    [23]Zhao S,Zhou N,Zhao ZY,et al.Endophytic bacterial diversity and dynamics in root of Salicornia europaea estimated via high throughput sequencing[J].Acta Microbiologica Sinica,2016,56(6):1000-1008(in Chinese)赵帄,周娜,赵振勇,等.基于高通量测序分析盐角草根部内生细菌多样性及动态觃律[J].微生物学报,2016,56(6):1000-1008
    [24]Deng PX,Guo RR,Yu GW,et al.Characterization of endophytic bacterial communities from leaves and stems of two ecotype of Sedum alfredii by high-throughput sequencing[J].Microbiology China,2017,44(3):533-544(in Chinese)邓平香,郭荣荣,余光伟,等.超积累和非超积累生态型东南景天茎、叶内生细菌多样性分析[J].微生物学通报,2017,44(3):533-544
    [25]Huang J,Yan BF,Huang Y.Diversity of culturable actinobacteria from soils collected in Ali,Naqu and Haixi Districts on the Qinghai-Tibet Plateau[J].Acta Microbiologica Sinica,2017,57(9):1342-1351(in Chinese)黄娇,闫兵法,黄英.青藏高原阿里、那曲和海西地区土壤可培养放线菌的多样性[J].微生物学报,2017,57(9):1342-1351
    [26]Alvarez A,Saez JM,Costa JSD,et al.Actinobacteria:current research and perspectives for bioremediation of pesticides and heavy metals[J].Chemosphere,2017,166:41-62
    [27]Bashan Y,De-Bashan LE,Prabhu SR,et al.Advances in plant growth-promoting bacterial inoculant technology:formulations and practical perspectives(1998-2013)[J].Plant and Soil,2014,378(1/2):1-33
    [28]Gu HP,Lou J,Wang HZ,et al.Biodegradation,biosorption of phenanthrene and its trans-membrane transport by Massilia sp.WF1 and Phanerochaete chrysosporium[J].Frontiers in Microbiology,2016,7:38
    [29]Lou J,Gu HP,Wang HZ,et al.Complete genome sequence of Massilia sp.WG5,an efficient phenanthrene-degrading bacterium from soil[J].Journal of Biotechnology,2016,218:49-50
    [30]Yan WZ,Zhang HQ,Yu CT,et al.Isolation of Acinetobacter sp.YN3 and its Heterotrophic nitrification-aerobic denitrification characters[J].Chinese Journal of Environmental Engineering,2017,11(7):4419-4428(in Chinese)颜薇芝,张汉强,余从田,等.1株异养硝化好氧反硝化不动杆菌的分离及脱氮性能[J].环境工程学报,2017,11(7):4419-4428
    [31]Wang H,Wu LL,Zhou LH,et al.Identification and oil-degrading performance of Acinetobacter sp.isolated from North Shaanxi oil-contaminated soil[J].Acta Ecologica Sinica,2014,34(11):2907-2915(in Chinese)王虎,吴玱玱,周立辉,等.陕北地区石油污染土壤中不动杆菌属的筛选、鉴定及降解性能[J].生态学报,2014,34(11):2907-2915
    [32]Yoshida S,Hiradate S,Koitabashi M,et al.Phyllosphere Methylobacterium bacteria contain UVA-absorbing compounds[J].Journal of Photochemistry and Photobiology B:Biology,2017,167:168-175
    [33]Vogel C,Bodenhausen N,Gruissem W,et al.The Arabidopsis leaf transcriptome reveals distinct but also overlapping responses to colonization by phyllosphere commensals and pathogen infection with impact on plant health[J].New Phytologist,2016,212(1):192-207
    [34]Gong BN,Wu PX,Huang ZJ,et al.Enhanced degradation of phenol by Sphingomonas sp.GY2B with resistance towards suboptimal environment through adsorption on kaolinite[J].Chemosphere,2016,148:388-394
    [35]Zhu XH,Sun ZY,Jian C,et al.Antimicrobial resistance of Acinetobacter isolates[J].Chinese Journal of Infection and Chemotherapy,2005,5(6):342-345(in Chinese)朱旭慧,孙自镛,简翠,等.不动杆菌属的耐药性分析[J].中国抗感染化疗杂志,2005,5(6):342-345
    [36]Carvalheira A,Silva J,Teixeira P.Lettuce and fruits as a source of multidrug resistant Acinetobacter spp.[J].Food Microbiology,2017,64:119-125
    [37]Yang Y,Gao KX,Wu Y,et al.Acid-mediated cross-kingdom signalling involved in plant-bacteria interactions[J].Biotechnology Bulletin,2016,32(8):14-21(in Chinese)杨扬,高兊祥,吴岩,等.吲哚乙酸跨界信号调节植物与细菌互作[J].生物技术通报,2016,32(8):14-21
    [38]Zhang XM,Wang HJ,Wang HB.Advances in biosynthesis and degradation of indoleacetic acid in plants under heavy metal stress[J].Chinese Journal of Ecology,2017,36(4):1097-1105(in Chinese)张雪梅,王海娟,王宏镔.重金属对植物吲哚乙酸合成与分解影响研究迚展[J].生态学杂志,2017,36(4):1097-1105
    [39]H?c-Wydro K,Sroka A,Jab?ońska K.The impact of auxins used in assisted phytoextraction of metals from the contaminated environment on the alterations caused by lead(II)ions in the organization of model lipid membranes[J].Colloids and Surfaces B:Biointerfaces,2016,143:124-130
    [40]Bashri G,Prasad SM.Indole acetic acid modulates changes in growth,chlorophyll a fluorescence and antioxidant potential of Trigonella foenum-graecum L.grown under cadmium stress[J].Acta Physiologiae Plantarum,2015,37:49.DOI:10.1007/s11738-014-1745-z
    [41]Ostrowski M,Ciarkowska A,Jakubowska A.The auxin conjugate indole-3-acetyl-aspartate affects responses to cadmium and salt stress in Pisum sativum L.[J].Journal of Plant Physiology,2016,191:63-72
    [42]Liu L,Sun L,Zhang RY,et al.Diversity of IAA-producing endophytic bacteria isolated from the roots of Cymbidium goeringii[J].Biodiversity Science,2010,18(2):182-187(in Chinese)刘琳,孙磊,张瑞英,等.春兰根中可分泌吲哚乙酸的内生细菌多样性[J].生物多样性,2010,18(2):182-187
    [43]Kang SM,Waqas M,Hamayun M,et al.Gibberellins and indole-3-acetic acid producing rhizospheric bacterium Leifsonia xyli SE134 mitigates the adverse effects of copper-mediated stress on tomato[J].Journal of Plant Interactions,2017,12(1):373-380
    [44]Yu X,Li Y,Cui Y,et al.An indoleacetic acid-producing Ochrobactrum sp.MGJ11 counteracts cadmium effect on soybean by promoting plant growth[J].Journal of Applied Microbiology,2017,122(4):987-996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700