高能中子辐射对线虫的剂量效应研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dose effect of high-energy neutron radiation on Caenorhabditis elegans
  • 作者:徐照 ; 陈妮 ; 王志刚 ; 李桃生
  • 英文作者:XU Zhao;CHEN Ni;WANG Zhigang;LI Taosheng;Key Laboratory of Neutron transport theory and Radiation Safety, Institute of Nuclear Energy Safety Technology,Chinese Academy of Sciences;University of Science and Technology of China;
  • 关键词:中子 ; 线虫 ; 生物学效应 ; 低剂量超敏性
  • 英文关键词:neutron;;Caenorhabditis elegans;;biological effectiveness;;low-dose hyper-radiosensitivity
  • 中文刊名:FSFH
  • 英文刊名:Radiation Protection
  • 机构:中国科学院核能安全技术研究所中子输运理论与辐射安全重点实验室;中国科学技术大学;
  • 出版日期:2019-03-20
  • 出版单位:辐射防护
  • 年:2019
  • 期:v.39;No.245
  • 基金:国家磁约束核聚变能发展研究专项项目(2014GB112000);; 国家自然科学基金项目(11605233);; 中国科学院合肥物质科学研究院院长基金(YZJJ201618)
  • 语种:中文;
  • 页:FSFH201902009
  • 页数:7
  • CN:02
  • ISSN:14-1143/TL
  • 分类号:65-71
摘要
本文研究了高能中子辐射对秀丽隐杆线虫(Caenorhabditis elegans)剂量效应并讨论了高能中子辐射的相对生物学效应。雌雄同体的线虫随机分为对照组和10个不同剂量梯度的照射组,分别为1 047、476、199、89、18.2、8.4、1.83、0.351、0.171和0.087 Gy。不同剂量梯度的线虫距离中子源的距离不同,但是照射时间相同。线虫经过单次高能中子全身照射后,分别于当天将线虫转入新皿进行产卵率、寿命的后续检测以及24小时后将线虫转入新皿进行生殖细胞凋亡的检测。结果表明,随着剂量的增加,产卵量呈现总体下降的趋势,特别是1.83 Gy对线虫子代数的影响很大,大于89 Gy照射后线虫停止产卵;寿命呈现随辐射剂量上升而下降的趋势,尤其是1.83 Gy对线虫寿命的缩短效应明显;大于8.4 Gy剂量中子照射时,生殖细胞凋亡随剂量的升高而显著上升。以上结果说明,高能中子辐射对线虫具有剂量效应,但是在低剂量辐射时可能有更强的损伤效应,为中子低剂量辐射防护提供了科学依据。本文同时讨论了以中子照射数据与前人γ射线照射实验结果相对比的结果,计算得出HINEG高能中子辐射的相对生物效应是1.25,表明在相近吸收剂量的γ射线与中子照射下两者生物学效应差异,提示了品质因数(Q值)与ICRP出版物的差异以及完善参考动物数据库的必要性。
        This paper studies the dose effect of high-energy neutron radiation on Caenorhabditis elegans and discusses the relative biological effects of high-energy neutron radiation. Hermaphrodite C.elegans were randomly divided into control group and 10 irradiation dose groups of 1 047, 476, 199, 89, 18.2, 8.4, 1.83, 0.351, 0.171 and 0.087 Gy, respectively. C.elegans in each group are placed in different distance from neutron source accordingly with same irradiation time. After a single high-energy neutron whole-body irradiation, part of C.elegans were transferred into the new dish immediately for follow-up detection of spawning rate and lifespan. The other part were transferred 24 hours later for germ cell death detection. The results showed that the spawning rate presented a general decline trend with the increase of dose, especially the damage of 1.83 Gy irradiation on the number of C.elegans progeny. C.elegans with more than 89 Gy radiation stopped spawning. The lifespan of C.elegans showed a trend of decreasing with the increase of radiation dose, particularly the shortening effect of 1.83 Gy was obvious. When irradiated C.elegans with greater than 8.4 Gy, the germ cell death rised significantly with the increase of dose. The above results show that high-energy neutron radiation has a dose effect on C.elegans. There might be a stronger damage effect at low dose, which provides scientific basis for neutron low-dose radiation protection. In this paper, it is also discussed that the relative biological effect of HINEG high-energy neutron radiation is 1.25, which is calculated by comparing the neutron irradiated data with the previous γ experimental results. It showed the biological effect difference between γ and neutron irradiation. The quality factor(Q)we suggested is different from that of ICRP report. It still needs more effort to improve the reference animal database.
引文
[1] 夏寿萱. 放射生物学[M]. 北京:军事医学科学出版社, 1998.XIA Shouxuan.Radiation biology[M]. Beijing: Military Medical Science Press,1998.
    [2] 段志凯, 郭万龙, 刘建功. 中子辐射生物效应研究进展[J]. 辐射防护通讯, 2008, 28(5):19-22.DUAN Zhikai, GUO Wanlong, LIU Jiangong, et al. Development of neutron-induced biological effectiveness research [J]. Radiation Protection Bulletin, 2008, 28(5):19-22.
    [3] 周永茂. 迈入新世纪的硼中子俘获疗法(BNCT)[J]. 中国工程科学, 2012, 14(8):4-13.ZHOU Yongmao. The boron neutorn capture therapy (BNCT) status to go into the new era [J]. Engineering Sciences, 2012, 14(8):4-13.
    [4] WU C, Bordeos A, Madamba M R S, et al. Rice lesion mimic mutants with enhanced resistance to diseases[J]. Molecular Genetics & Genomics, 2008, 279(6):605-19.
    [5] Bruggemann E, Handwerger K, Essex C, et al. Analysis of fast neutron-generated mutants at the Arabidopsis thaliana HY4, locus[J]. Plant Journal, 1996, 10(4):755-760.
    [6] Henikoff S, Comai L. Single-nucleotide mutations for plant functional genomics[J]. Annual Review of Plant Biology, 2003, 54(1):375-401.
    [7] Edgley M, D’Souza A, Moulder G, et al. Improved detection of small deletions in complex pools of DNA[J]. Nucleic Acids Research, 2002, 30(12):e52.
    [8] Sasaki M S, Endo S, Hoshi M, et al. Neutron relative biological effectiveness in Hiroshima and Nagasaki atomic bomb survivors: a critical review[J]. Journal of Radiation Research, 2016, 57(6):583-595.
    [9] Baiocco G, Barbieri S, Babini G, et al. The origin of neutron biological effectiveness as a function of energy[J]. Scientific Reports, 2016, 6(6):34 033.
    [10] Phillips T L, Fu K K. Biological of 15 MeV neutrons[J]. International Journal of Radiation Oncology Biology Physics, 1976,1(11-12):1 139.
    [11] 王晶晶, 许安, 代慧, 等. 利用模式生物秀丽线虫评价磁场生物效应进展[J]. 应用与环境生物学报, 2015, 21(6):1 003-1 011.WANG J J, XU An, DAI H, et al. Progress in assessing biological effects of magnetic fields using model organism progress in assessing biological effects of magnetic Caenorhabditis elegans[J]. Chinese Journal of Applied & Environmental Biology, 2015, 21(06):1 003-1 011
    [12] WU Y C. Development of high intensity D-T fusion neutron generator HINEG[J].International Journal of Energy Research,2016, 42(1):68-72.
    [13] 吴宜灿,刘超,宋钢,等. 强流氘氚聚变中子源HINEG设计研究[J].核科学与工程, 2016, 36(1):77-83.WU Y C, LIU C, SONG G, et al. Design study of high intensity D-T fusion neutron generator HINEG[J]. Nuclear Science and Engineering, 2016, 36(1):77-83.
    [14] 王刚,于前锋,王文,等. 10~(12)n/s氘氚聚变中子发生器旋转氚靶设计与传热分析[J].核科学与工程.2015, 64(1):13-17.WANG G, YU Q F, WANG W, et al. Design and heat transfer analysis of rotating tritium target of 10~(12)n/s D-T fusion neutron generator[J]. Nuclear Science & Engineering, 2015, 64(1):13-17.
    [15] 田志恒,潘自强.辐射剂量学[M].北京:原子能出版社,1992.TIAN Zhiheng, PAN Ziqiang.Radiation dosimetry[M].Beijing: Atomic Energy Press,1992.
    [16] 李星洪.辐射防护基础[M].北京:原子能出版社,1982.LI Xinghong.Basis of radiation protection[M].Beijing: Atomic Energy Press,1982.
    [17] 刘家炉, 郭肖颖, 黎青青, 等. 碳离子辐射诱导秀丽隐杆线虫生殖细胞凋亡研究[J]. 原子核物理评论, 2015, 32(1):105-109.LIU Jialu, GUO Xiaoying, LI Qingqing, et al. Effects of carbon ion irradiation on the germ cell apoptosis in Caenorhabditis elegans[J]. Nuclear Physics Review, 2015, 64(1):13-17.
    [18] 黎青青. 线虫辐射损伤信号空间转导与机制研究[D].中国科学技术大学,2017.LI Qingqing. The spatial function and the mechanism of damage signal transduction in Caenorhabditis elegans[D]. University of Science and Technology of China,2017.
    [19] Marples B, Krueger S A, Collis S J, et al. Low dose hyper-radiosensitivity: a historical perspective [M]//Targeted Radionuclide Tumor Therapy. Springer, Dordecht, 2008: 329-347.
    [20] 李德平. ICRP和辐射防护的发展——祝贺ICRP诞生70周年[J]. 辐射防护, 1998, 18(Z1):130-138.LI Deping. Progress of ICRP and radiation protection:celebration of ICRP 70th [J]. Radiation Protection, 1998, 18(Z1):130-138.
    [21] 叶侃,辐射对秀丽线虫的生长损伤及其防护研究[D]. 苏州大学,2011YE Kan. Study on the radiation damage of growth and the protection in Caenorhabditis elegans[D]. Soochow University,2011.
    [22] ICRP. 1990 Recommendations of the International Commission on Radiological Protection[M]. ICRP Public 60. Oxford: Pergamon Press, 1991.
    [23] А.Г.斯维尔德洛夫. 中子的生物效应和化学防护[M]. 北京:原子能出版社, 1981.Свердлов А Г. Biological effect and chemical protection of neutron[M]. Beijing: Atomic Energy Press, 1981.
    [24] ICRP. The 2007 Recommendations of the International Commission on Radiological Protection[M]. ICRP Public 103. Oxford: Pergamon Press, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700