深井热湿环境下空冷器气侧污垢沉积规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fouling of the Gas Side of Air Cooler Under Hot and Humid Deep Coal Mine
  • 作者:张毅 ; 韩巧云 ; 刘仙萍 ; 袁志刚
  • 英文作者:Zhang Yi;Han Qiaoyun;Liu Xianping;Yuan Zhigang;School of Civil Engineering,Hunan University of Science and Technology;School of Resources,Environment and Safety Engineering,Hunan University of Science and Technology;
  • 关键词:深井降温 ; 空冷器 ; 污垢沉积 ; 热湿环境
  • 英文关键词:cooling under deep mine;;air cooler;;fouling;;hot and humid environment
  • 中文刊名:KTGC
  • 英文刊名:Mineral Engineering Research
  • 机构:湖南科技大学土木工程学院;湖南科技大学资源环境与安全工程学院;
  • 出版日期:2019-07-17 15:11
  • 出版单位:矿业工程研究
  • 年:2019
  • 期:v.34;No.121
  • 基金:国家自然科学基金资助项目(51704110);; 湖南省自然科学基金资助项目(2017JJ3075; 2017JJ3090);; 湖南省教育厅资助科研项目(16C0654)
  • 语种:中文;
  • 页:KTGC201902010
  • 页数:8
  • CN:02
  • ISSN:43-1493/TD
  • 分类号:58-65
摘要
巷道热湿环境是深部资源开采所遭遇的重要问题之一,人工制冷降温技术成为解决该问题的关键.然而矿用空冷器作为系统末端,位于生产最前线,工作环境恶劣,气侧污垢积聚严重.本文结合Euler-Lagranian模型,针对深井热湿、含尘环境下空冷器气侧的污垢沉积规律展开研究.研究发现,当粉尘粒径小于10μm时,粉尘颗粒受重力影响较小,管壁上的污垢分布较为均匀;当粉尘粒径大于10μm时,粉尘颗粒受重力影响较大,污垢的分布主要集中于前部管道;粉尘的沉积量与风速,管内水温呈负相关关系,与相对湿度呈正相关关系.研究结果对于深部热湿环境下空冷器气侧高效防垢、抑垢及除垢技术的研究具有理论指导意义.
        Cooling system is widely used in deep coal mines of China for the increasing heat and humid hazard,which are the problems caused by the deep mining. Air cooler,located at the mining tunnel,is easily fouled by the hot,humid and dust air. The Euler-Lagranian model is taken in this paper to study the mechanism of fouling of the gas side of air cooler under hot and humid deep coal mine. Results are indicated that when the dust particle size is less than 10 μm,the dust particles are less affected by gravity,and the fouling distribution on the pipe wall is more uniform. When the dust particle size is larger than 10 μm,the dust particles are more affected by gravity,and the fouling distribution is mainly concentrated in the front tube. Dust deposition and water temperature in the pipe is negatively correlated with air velocity,while it is positively correlated with relative humidity. It is of theoretical guiding significance to study the fouling mechanism of air cooler in hot and humid dusty environment of deep wells for the research of efficient prevention and suppressing scaling and scale removal technology,and the performance of air cooler.
引文
[1]Yang X J,Han Q Y,Pang J W,et al. Progress of heat-hazard treatment in deep mines[J]. Mining science and technology(China),2011,21(2):295-299.
    [2]Guo P Y,He M C,Zheng L G,et al. A geothermal recycling system for cooling and heating in deep mines[J].Applied thermal engineering,2017(116):833-839.
    [3]秦跃平,张苗苗,崔丽洁,等.综掘工作面粉尘运移的数值模拟及压风分流降尘方式研究[J].北京科技大学学报,2011,33(7):790-794.
    [4]He M C. Application of HEMS cooling technology in deep mine heat hazard control[J].Mining science and technology,2005,19(3):269-275.
    [5]Bell I H,Groll E A.Air-side particulate fouling of microchannel heat exchangers:Experimental comparison of air-side pressure drop and heat transfer with plate-fin heat exchanger[J].Applied Thermal Engineering,2011(31):742-749.
    [6]刘彩霞,邹声华,张登春.风流流速对矿用空冷器换热影响的数值模拟[J].矿业工程研究,2013,28(1):39-42.
    [7]周福宝,夏同强,刘应科,等.二次封孔粉料颗粒输运特性的气固耦合模型研究[J].煤炭学报,2011,36(6):953-958.
    [8]付峥嵘,李念平,王汉青.风管中颗粒物沉降速度的解析法预测模型[J].湖南大学学报(自然科学法),2008,35(2):35-38.
    [9]洪文鹏,齐琪.粗糙壁面流道内颗粒趋壁沉积特性的数值研究[J].中国电机工程学报,2016,36(s1):147-153.
    [10]Wang F L,He Y l,Tong Z X,et al.Real-time fouling characteristics of a typical heat exchanger used in the waste heat recovery systems[J].International Journal of Heat and Mass Transfer,2017(104):774-786.
    [11]倪建军,梁钦锋,代正华,等.撞击流气化炉内气固两相流动与颗粒附壁沉积数值模拟[J].中国电机工程学报,2009,29(2):69-74.
    [12]刘洪涛,张力.微细颗粒壁面沉积的数值研究[J].工程热物理学报,2010,31(3):431-434.
    [13]Huang L Y,Norman J S,Pourkashanian M,et al. Prediction of ash deposition on superheater tubes from pulverized coal combustion[J].Fuel,1996,75(3):271-279.
    [14]马云东,罗根华,郭昭华.转载点粉尘颗粒扩散运动规律的数值模拟[J].安全与环境学报,2006,6(2):16-18.
    [15]穆林,赵亮,尹洪超.废液焚烧余热锅炉内气固两相流动与飞灰沉积的数值模拟[J].中国电机工程学报,2012,32(29):30-37.
    [16]周涛,杨旭,林达平,等.湿度对矩形窄通道内细颗粒热泳沉积的影响[J].上海交通大学学报,2015,49(5):718-724.
    [17]姬玉成,楼建国,张留祥,等.综采工作面割煤时粉尘运移变化规律的数值研究[J].四川师范大学学报(自然科学版),2014,37(3):419-423.
    [18]童自翔,何雅玲,李印实,等.利用LBM-FVM-CA耦合方法模拟管表面上的颗粒沉积与脱离过程[J].科学通报,2016,61(17):1912-1921.
    [19]唐婵,张靖周.飞灰颗粒横掠管束的沉积特性数值研究[J].电站系统工程,2016,32(1):1-4.
    [20]魏明哲,张易阳,吴莘馨,等.颗粒-壁面相互作用对石墨粉尘在高温气冷堆蒸汽发生器换热管表面沉积过程的影响[J].原子能科学技术,2016,50(8):1369-1374.
    [21]Kuruneru S T W,Sauret E,Saha S C,et al.Numerical investigation of the temp-oral evolution of particulate fouling in metal foams for air-cooled heat exchangers[J].Applied Energy,2016(184):531-547.
    [22]Zhan F L,Zhuang D W,Ding G L,et al. Numerical model of particle deposition on fin surface of heat exchanger[J].International journal of refrigeration,2016(72):27-40.
    [23]Inamdar H V,Groll E A,Weibel J A,et al. Prediction of air-side particulate fouling of HVAC&R heat exchangers[J].Applied Thermal Engineering,2016(104):720-733.
    [24]李艳强,吴超,阳富强.微颗粒在表面粘附的力学模型[J].环境科学与技术,2008,31(1):8-11.
    [25]程卫民,聂文,姚玉静,等.综掘工作面旋流气幕抽吸控尘流场的数值模拟[J].煤炭学报,2011,36(8):1342-1348.
    [26]周刚,程卫民,陈连军,等.综放工作面粉尘浓度空间分布规律的数值模拟及其应用[J].煤炭学报,2010,35(12):2094-2099.
    [27]Zou S H,Li K Q,Han Q Y,et al.Numerical simulation of the dynamic formation process of fog-haze and smog in transport tunnels of a hot mine[J]. Indoor and Built Environment,2017,26(8):1062-1069.
    [28]韩云龙,胡永梅,钱付平.通风管道内温湿度对颗粒沉积的影响[J].土木建筑与环境工程,2010,32(4):66-70.
    [29]潘亚娣,司风琪,徐治皋.电站锅炉受热面灰污沉积模型[J].中国电机工程学报,2010,36(8):63-67.
    [30]Abd-Elhady M S,Rindt C C M,Wijers J G,et al. Particulate fouling in waste incinerators as influenced by the critical sticking velocity and layer porosity[J].Energy,2005,30(8):1469-1479.
    [31]王苑,张品,林鹏云,等.链条炉飞灰沉积的数值模型与计算[J].热能动力工程,2011,26(2):207-211.
    [32]Pan Y D,Si F Q,Xu Z G,et al. An integrated theoretical fouling model for convective heating surfaces in coal-fired boilers[J]. Powder technology,2011,210:150-156.
    [33]Han H,He Y L,Tao W Q,et al. A parameter study of tube bundle heat exchangers for fouling rate reduction[J]. International Journal of Heat and Mass Transfer,2014,72:210-221.
    [34]Paz C,Suárez E,Eirís A,et al. Development of a predictive CFD fouling model for diesel engine exhaust gas systems[J].Heat Transfer Eng,2013,34:674-682.
    [35]Li K Q,Zou S H,Zhang C. Pressure drop due to mass transfer in the tunnels[J]. Chinese Journal of Applied Mechanics,2016,33(2):358-364.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700