广西大青山柚木人工林生长过程研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Growth Process of Tectona grandis Plantations in Daqingshan Mountains, Guangxi
  • 作者:贾宏炎
  • 英文作者:JIA Hong-yan;Experimental Center of Tropical Forestry, Chinese Academy of Forestry,Guangxi Youyiguan Forest Ecosystem Research Station;
  • 关键词:柚木 ; 生长过程 ; 生长类型 ; 分级木 ; 气象因子 ; 灰色关联分析
  • 英文关键词:Tectona grandis;;growth process;;growth types;;tree grading;;meteorological factors;;Grey correlation analysis
  • 中文刊名:LYKX
  • 英文刊名:Forest Research
  • 机构:中国林业科学研究院热带林业实验中心,广西友谊关国家森林生态系统定位观测研究站;
  • 出版日期:2019-02-15
  • 出版单位:林业科学研究
  • 年:2019
  • 期:v.32
  • 基金:中央级科研院所基本科研业务费专项资金项目“珍贵树种心材形成过程及定向培育技术研究”(CAFYBB2017MB019)
  • 语种:中文;
  • 页:LYKX201901014
  • 页数:9
  • CN:01
  • ISSN:11-1221/S
  • 分类号:100-108
摘要
[目的]研究柚木人工林生长过程及其与气象因子的相关性,为柚木抚育经营提供理论依据。[方法]以优良、中等和差3种生长类型的30余年生柚木人工林为对象,基于样地调查,选取优势木、平均木、被压木进行树干解析,对比分析其生长过程,应用灰色关联分析法揭示气象因子对柚木生长的影响。[结果]表明:3种生长类型林分柚木胸径、树高和材积生长过程基本一致,各分级木的生长过程亦相似,其胸径平均和连年生长量随年龄的增大呈先增加后逐渐降低的趋势,树高生长整体上呈下降趋势,材积生长则呈递增趋势。各优良林分的林木及各类型林分的优势木,其胸径、材积平均和连年生长量较大,速生期持续时间长,生长衰减慢,而其树高生长量的优势相对不明显;30余年生时柚木尚未达数量成熟龄。各类型林分间柚木生长与气象因子关系的差异仅体现在胸径,优良林分胸径连年生长量主要受极端低温影响,而中等和差林分则与年均降水量相关性最大;各分级木间柚木生长与气象因子的关系无明显差异;影响树高和材积连年生长量的最主要气象因子分别为年均降水量和年均气温。[结论]柚木各生长类型及分级木的生长过程整体趋势基本一致,其差异主要体现在生长量大小和快速生长期长短。约30年生柚木人工林仍未达到数量成熟,后期抚育经营对于其优质大径材高效培育仍不可忽视。
        [Objective] The growth process of Tectona grandis plantations was investigated and its relationship with meteorological factors was analyzed so as to provide evidences for plantation management of this species. [Method] Based on investigation of sampling plots, the dominant, mean and suppressed T. grandis trees aged about 30 years were sampled from high, medium and low growth types of its plantations, stem analysis was conducted for each sampled tree, and the growth process of these trees were compared among growth types. Grey correlation analysis was further applied to explore the effects of meteorological factors on annual tree growth of this species. [Result] The growth process of stem diameter at breast height(DBH), tree height and individual volume of T. grandis showed no significant difference among the three growth types and three classes of trees. The mean and current annual increments of DBH increased with tree age initially and then decreased, while decreased for those of height and increased for individual tree volume. The dominant trees or trees in high growth type of plantations had higher mean and current annual growth, longer rapid growth duration and slower growth declination of DBH and volume, while the difference in height growth were not obvious relatively. the 30-year-old trees did not reach the quantitative maturity. The difference of relationships between tree growth and meteorological factors among three growth types was only found on DBH. The main factor influencing current annual increment of DBH was extreme low temperature at high growth type, while mean annual precipitation at medium and low growth types. There was no significant difference of relationships between tree growth and meteorological factors among three classes of trees. The main factors influencing current annual increments of tree height and individual volume were mean annual precipitation and mean annual air temperature, respectively. [Conclusion] The growth processes of T. grandis are basically consistent in three growth types of plantations as well as for three grades of trees, their differences mainly demonstrate in growth performance and length of rapid growth. Due to the fact that T. grandis plantation do not reach quantitative maturity at the age of 30, tending and management are still important at the late stage for high-quality large-sized timber production of this species.
引文
[1] García O. Comparing and combining stem analysis and permanent sample plot data in site index models[J]. Forest Sciece, 2005, 51(4): 277-283.
    [2] Perez D. Growth and volume equations developed from stem analysis for Tectona grandis in Costa Rica[J]. Journal of Tropical Forest Science, 2008, 20(1): 66-75.
    [3] Machado S D A, Silva L C R D, Figura M A, et al. Comparison of methods for estimating heights from complete stem analysis data for Pinus taeda[J]. Ciência Florestal, 2010, 20(1): 45-55.
    [4] 童书振, 盛炜彤, 张建国. 杉木林分密度效应研究[J]. 林业科学研究, 2002, 15(1): 66-75.
    [5] Zhang J, Oliver W W, Ritchie M W. Effect of stand densities on stand dynamics in white fir (Abies concolor) forests in northeast California, USA[J]. Forest Ecology and Management, 2007, 244(1): 50-59.
    [6] 王春胜, 赵志刚, 曾冀, 等. 广西凭祥西南桦中幼林林木生长过程与造林密度的关系[J]. 林业科学研究, 2013, 26(2): 257-262.
    [7] 张东北, 周启忠, 赵忠北, 等. 立地条件对杉木生长过程的影响[J]. 福建林学院学报, 1996, 16(1): 86-88.
    [8] 彭鸿, Mosandl R. 立地和人为干扰对渭北黄土高原刺槐人工林个体生长过程的影响[J]. 山东农业大学学报:自然科学版, 2003, 34(1): 44-49.
    [9] 许景伟, 李琪, 王卫东, 等. 沙岸黑松海防林防护成熟期及更新年龄的研究[J]. 林业科学, 2003, 39(2): 91-97.
    [10] 邱治军, 胡海波. 徐淮平原杨树农田防护林的成熟龄与更新龄[J]. 南京林业大学学报:自然科学版, 2005, 29(1): 46-50.
    [11] 洪玲霞. 初植密度、间伐对杉木林分优势高生长过程的影响[J]. 林业科学研究, 1997, 10(4): 448-452.
    [12] 陈英, 杨华, 李伟, 等. 北京地区侧柏人工林标准木生长过程研究[J]. 西北林学院学报, 2012, 27(5): 153-157.
    [13] 赵西平, 余建基, 张超男, 等. 黑龙江省帽儿山林场天然白桦林优势生长过程研究[J]. 西北林学院学报, 2014, 29(2): 191-195.
    [14] 李晓庆, 周俊宏, 郑勇平. 不同立地指数级杉木生长过程的数学模拟[J]. 浙江林学院学报, 1991, 8(3): 281-287.
    [15] Milios E. The influence of stand development process on the height and volume growth of dominant Fagus sylvatica L. sl trees in the central Rhodope Mountains of north-eastern Greece[J]. Forestry, 2004, 77: 17-26.
    [16] Sánchez-González M, Tomé M, Montero G. Modelling height and diameter growth of dominant cork oak trees in Spain[J]. Annals of Forest Science,2005, 62(7): 633-643.
    [17] 林文树, 穆丹, 王丽平, 等. 针阔混交林不同演替阶段表层土壤理化性质与优势林木生长的相关性[J]. 林业科学, 2016, 52(5): 17-25.
    [18] 玉宝, 王立明. 兴安落叶松天然林分级木生长特性分析[J]. 林业科学研究, 2007, 20(4): 452-457.
    [19] 侯爱敏, 周国逸, 彭少麟. 鼎湖山马尾松径向生长动态与气候因子的关系[J]. 应用生态学报, 2003, 14(4): 637-639.
    [20] 程瑞梅, 封晓辉, 肖文发, 等. 北亚热带马尾松净生产力对气候变化的响应[J]. 生态学报, 2011, 31(8): 2086-2095.
    [21] 张丽云, 邓湘雯, 雷相东, 等. 不同生长阶段马尾松生产力与气候因子的关系[J]. 生态学杂志, 2013, 32(5): 1104-1110.
    [22] 梁坤南, 周再知, 马华明, 等. 我国珍贵树种柚木人工林发展现状、对策与展望[J]. 福建林业科技, 2011, 38(4): 173-178.
    [23] 杜健, 梁坤南, 周树平, 等. 不同地区柚木人工林生长及土壤理化性质的研究[J]. 林业科学研究, 2016, 29(6): 854-860.
    [24] 杜健, 梁坤南, 周再知, 等. 云南西双版纳柚木人工林立地类型划分及评价[J]. 林业科学, 2016, 52(9): 1-10.
    [25] 唐守正, 郎奎建, 李海奎. 统计和生物数学模型计算: ForStat教程[M]. 北京: 科学出版社, 2009.
    [26] 刘贤谦, 师光禄, 张厉燕.应用灰色关联度分析关键因子的研究[J]. 林业科学, 1996, 32(5): 447-453.
    [27] 刘彬彬, 楼炉焕, 刘广宁, 等. 浙江省小叶青冈生长过程的研究[J]. 浙江农林大学学报, 2013, 30(4): 517-522.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700