横桥向地震作用对钢拱桥地震损伤发展的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of transverse earthquake action on development of seismic damage of steel arch bridges
  • 作者:诸葛翰卿 ; 谢旭 ; 廖燕华 ; 唐站
  • 英文作者:ZHUGE Han-qing;XIE Xu;LIAO Yan-hua;TANG Zhan-zhan;College of Civil Engineering and Architecture, Zhejiang University;College of Civil Science and Engineering, Yangzhou University;
  • 关键词:中承式钢拱桥 ; 空间三维地震作用 ; 混合有限元模型 ; 钢板局部变形 ; 超低周疲劳损伤
  • 英文关键词:half-through steel arch bridge;;three-dimensional seismic load;;hybrid finite element model;;local deformation of steel plate;;ultra-low-cycle fatigue damage
  • 中文刊名:ZDZC
  • 英文刊名:Journal of Zhejiang University(Engineering Science)
  • 机构:浙江大学建筑工程学院;扬州大学建筑科学与工程学院;
  • 出版日期:2019-01-24 09:50
  • 出版单位:浙江大学学报(工学版)
  • 年:2019
  • 期:v.53;No.348
  • 基金:国家自然科学基金资助项目(51878606);国家自然科学基金青年资助项目(51708485)
  • 语种:中文;
  • 页:ZDZC201904011
  • 页数:11
  • CN:04
  • ISSN:33-1245/T
  • 分类号:95-105
摘要
为了研究横桥向地震作用对钢拱桥结构地震损伤发展的影响,以一座实际中承式钢拱桥为对象,建立考虑损伤区局部变形影响的全桥混合有限元(FE)模型.通过对结构进行不同峰值加速度地震作用下的弹塑性地震反应计算,对比分析在空间三维地震作用和仅在桥梁面内地震作用下钢拱桥的损伤发展情况.结果表明,横桥向地震动输入虽然不改变钢拱桥面内的位移时程响应及地震塑性损伤区域的分布位置,但会增大钢板发生局部变形的程度并加速焊接节点超低周疲劳损伤的发展,从而增大结构发生局部失稳破坏和超低周疲劳破坏的可能性.在钢拱桥的抗震设计中宜同时考虑3个方向的地震作用,以确保结构的抗震安全.
        A real half-through steel arch bridge was considered as an example in order to analyze the influence of transverse earthquake action on the seismic damage development of steel arch bridges. A full-bridge hybrid finite element(FE) model considering local deformation effect in the damaged zone was constructed. Damage development of the steel arch bridge under three-dimensional and in-plane earthquake actions were compared according to elastoplastic seismic response calculation results under seismic loads with different peak accelerations.Results show that input of transverse ground motion will not change the in-plane displacement response and the location of plastic damaged zone of the steel arch bridge, but will increase the degree of local deformation of steel plates and accelerate the development of ultra-low-cycle fatigue damage at welded joints, thus increase the risk of localized instability and ultra-low-cycle fatigue failure of the structure. Three-dimensional earthquake actions should be considered to ensure the seismic safety of structures in the seismic design for steel arch bridges.
引文
[1]KAWASHIMA K,UNJOH S.The damage of highway bridges in the 1995 Hyogo-Ken Nanbu earthquake and its impact on Japanese seismic design[J].Journal of Earthquake Engineering,1997,1(3):505-541.
    [2]USAMI T.Guidelines for seismic and damage control design of steel arch bridges[M].Tokyo:Gihodo Shuppan Co.Ltd.,2007.
    [3]GAO S,USAMI T,GE H.Ductility evaluation of steel bridge piers with pipe-sections[J].Journal of Engineering Mechanics,1998,124(3):260-267.
    [4]USAMI T,GE H.Cyclic behavior of thin-walled steel structures:numerical analysis[J].ThinWalled Structure,1998,32(1-3):41-80.
    [5]USAMI T,GE H,GAO S.Stiffened steel box columns.Part 2:ductility evaluation[J].Earthquake Engineering and Structural Dynamics,2000,29(11):1707-1722.
    [6]WATANABE E,SUGIURA K,OYAWA W O.Effects of multi-directional displacement paths on the cyclic behavior of rectangular hollow steel column[J].Journal of Structural Engineering and Earthquake Engineering,2000,17(1):79-94.
    [7]DANG J,NAKAMURA T,AOKI T,et al.Bi-directional loading hybrid test of square section steel piers[J].Journal of Structural Engineering,2010,56A:367-380.
    [8]GOTO Y,JIANG K,OBATA M.Stability and ductility of thin-walled circular steel columns undercyclic bidirectional loading[J].Journal of Structural Engineering,2006,132(10):1621-1631.
    [9]GOTO Y,MURAKI K,OBATA M.Ultimate state of thin-walled circular steel columns under bidirectional seismic accelerations[J].Journal of Structural Engineering,2009,135(12):1481-1490.
    [10]GOTO Y,JIANG K,OBATA M.Hysteretic behavior of thin-walled stiffened rectangular steel columns under cyclic bi-axial loading[J].Journal of Japan Society of Civil Engineers,2007,63(1):122-141.
    [11]GOTO Y,KOYAMA R,FUJII Y,et al.Ultimate state of thin-walled stiffened rectangular steel columns under bi-directional seismic excitations[J].Journal of Japan Society of Civil Engineers,2009,65(1):61-80.
    [12]NONAKA T,ALI A.Dynamic response of halfthrough steel arch bridge using fiber model[J].Journal of Bridge Engineering,2001,6(6):482-488.
    [13]USAMI T,LU Z,GE H,et al.Seismic performance evaluation of steel arch bridges against major earthquakes.Part 1:dynamic analysis approach[J].Earthquake Engineering and Structural Dynamics,2004,33(14):1337-1354.
    [14]LU Z,USAMI T,GE H,Seismic performance evaluation of steel arch bridges against major earthquakes.Part 2:simplified verification procedure[J].Earthquake Engineering and Structural Dynamics,2010,33(14):1355-1372.
    [15]CETINKAYA O T,NAKAMUR S,TAKAHASHI K.Expansion of a static analysis-based out-of-plane maximum inelastic seismic response estimation method for steel arch bridges to in-plane response estimation[J].Engineering Structures,2009,31(9):2209-2212.
    [16]谢旭,唐站站,胡欣科,等.纤维模型在钢拱桥抗震设计中的适用性研究[J].中国公路学报,2015,28(2):33-42.XIE Xu,TANG Zhan-zhan,HU Xin-ke,et al.Study on application of fiber model In seismic design for steel arch bridge[J].China Journal of Highway and Transport,2015,28(2):33-42.
    [17]JTG D64-2015,公路钢结构桥梁设计规范[S].北京:人民交通出版社,2015.
    [18]SHEN C,MIZUNO E,USAMI T.A generalized twosurface model for structural steels under cyclic loading[J].Journal of Structural Mechanics and Earthquake Engineering,JSCE,1993,471(I-2):23-33.
    [19]SHEN C,MAMAGHANI I,MIZUNO E,et al.Cyclic behavior of structural steel,II:theory[J].Journal of Engineering Mechanics,ASCE,1995,121(11):1165-1172.
    [20]王彤.桥梁结构钢材滞回本构模型改进及其应用研究[D].杭州:浙江大学,2016.WANG Tong.Improvement of the hysteresis constitutive model of bridge structure steel and its application[D].Hangzhou:Zhejiang University,2016.
    [21]CHEN W,DUAN L.Bridge engineering handbook:Seismic design[M].Boca Raton:CRC Press,2014.
    [22]日本道路协会.日本道路桥示方书(抗震设计篇)[S].东京:丸善出版株式会社,2017.
    [23]CJJ 166-2011,城市桥梁抗震设计规范[S].北京:中国建筑工业出版社,2011.
    [24]GE H,TSUMURA Y.Experimental and analytical study on the evaluation of ductile crack initiation in steel bridge piers[J].Journal of Structural Engineering,2004,50A:1427-1436.
    [25]GE H,LUO X.A seismic performance evaluation method for steel structures against local buckling and extra-low cycle fatigue[J].Journal of Earthquake and Tsunami,2011,5(2):83-99.
    [26]GE H,KANG L.Ductile crack initiation and propagation in steel bridge piers subjected to random cyclic loading[J].Engineering Structures,2014,59:809-820.
    [27]TATEISHI K,HANJI T.Low cycle fatigue strength of butt-welded steel joint by means of new testing system with image technique[J].International Journal of Fatigue,2004,26(12):1349-1356.
    [28]TATEISHI K,HANJI T,MINAMI K.A prediction model for extremely low cycle fatigue strength of structural steel[J].International Journal of Fatigue,2007,29(5):887-896.
    [29]KANVINDE A,DEIERLEIN G.Void growth model and stress modified critical strain model to predict ductile fracture in structural steels[J].Journal of Structural Engineering,2006,132(12):1907-1918.
    [30]KANVINDE A,DEIERLEIN G.Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue[J].Journal of Engineering Mechanics,2007,133(6):701-712.
    [31]ZHOU H,WANG Y,SHI Y,et al.Extremely low cycle fatigue prediction of steel beam-to-column connection by using a micro-mechanics based fracture model[J].International Journal of Fatigue,2013,48(2):90-100.
    [32]廖燕华.钢桥焊接节点超低周疲劳性能与断裂机理研究[D].杭州:浙江大学,2018.LIAO Yan-hua.Research on ultra low cycle fatigue properties and fracture mechanism of steel bridge welded joint[D].Hangzhou:Zhejiang University,2018.
    [33]LIAO F,WANG W,CHEN Y.Parameter calibrations and application of micromechanical fracture models of structural steels[J].Structural Engineering and Mechanics,2012,42(2):153-174.
    [34]CHABOCHE J.Time independent constitutive theories for cyclic plasticity[J].International Journal of Plasticity,1986,2(2):149-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700