蝶形天线增强的共振隧穿二极管太赫兹探测器研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research of Terahertz Detector Based on Resonant Tunneling Diode Enhanced by Bowtie Antenna
  • 作者:李金伦 ; 崔少辉 ; 张振伟 ; 倪海桥 ; 牛智川
  • 英文作者:Li Jinlun;Cui Shaohui;Zhang Zhenwei;Ni Haiqiao;Niu Zhichuan;Department of Missile Engineering,Shijiazhuang Campus,PLA Army Engineering University;State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences;Key Laboratory of THz Optoelectronics,Ministry of Education,Department of Physics,Capital Normal University;College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences;
  • 关键词:光学器件 ; 探测器 ; 太赫兹 ; 蝶形天线 ; 共振隧穿二极管
  • 英文关键词:optical devices;;detectors;;terahertz;;bowtie antenna;;resonant tunneling diode
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:中国人民解放军陆军工程大学石家庄校区导弹工程系;中国科学院半导体研究所超晶格国家重点实验室;首都师范大学物理系太赫兹光电子学教育部重点实验室;中国科学院大学材料科学与光电技术学院;
  • 出版日期:2018-04-27 15:10
  • 出版单位:中国激光
  • 年:2018
  • 期:v.45;No.500
  • 基金:国家自然科学基金(61435012);; 中国科学院科研仪器设备研制项目(YJKYYQ20170032)
  • 语种:中文;
  • 页:JJZZ201808040
  • 页数:6
  • CN:08
  • ISSN:31-1339/TN
  • 分类号:288-293
摘要
采用分子束外延技术制备了基于共振隧穿二极管的探测器样品。为提高探测响应度,探测器采用蝶形天线增强太赫兹电场强度,并以0.2THz入射频率为参考对天线结构进行设计。测试采用输出功率为20 mW的太赫兹源,室温下在有无太赫兹波辐照时分别进行电流-电压(I-V)测试,峰值电压为1.398V。对比最大电流值之差,计算得到探测器响应度为20mA·W~(-1),噪声等效功率为15nW·Hz~(-0.5),并通过测量探测器对不同角度入射太赫兹波的响应,验证了天线对太赫兹电场的增强作用。
        Detector samples based on resonant tunneling diode(RTD)are fabricated by molecular beam epitaxy.In order to improve the detection responsivity,the detector uses bowtie antenna to enhance the terahertz electric field intensity,in which the antenna structure is designed with reference to 0.2 THz incident frequency.The terahertz source with an output power of 20 mW is used for testing.Current-voltage(I-V)test is performed with and without THz irradiation at room temperature,and the peak voltage is 1.398 V.The difference between the maximum current values is tested,the detector responsivity is calculated to be of 20 mA·W~(-1) and the noise equivalent power is 15 nW · Hz~(-0.5).The response of the detector to the terahertz wave in different directions of incidence is measured,and the enhancement of the antenna on terahertz electric field is verified.
引文
[1]Cao J C.Semiconductor terahertz sources,detectors and applications[M].Beijing:Science Press,2012:1.曹俊诚.半导体太赫兹源、探测器与应用[M].北京:科学出版社,2012:1.
    [2]Li J L,Cui S H,Xu J X,et al.2DEG characteristics of HEMT THz detector[J].Journal of Infrared and Millimeter Waves,2017,36(6):790-794.李金伦,崔少辉,徐建星,等.HEMT太赫兹探测器的二维电子气特性分析[J].红外与毫米波学报,2017,36(6):790-794.
    [3]Qin H,Huang Y D,Sun J D,et al.Terahertz-wave devices based on plasmons in two-dimensional electron gas[J].Chinese Optics,2017,10(1):51-67.秦华,黄永丹,孙建东,等.二维电子气等离激元太赫兹波器件[J].中国光学,2017,10(1):51-67.
    [4]Sizov F,Rogalski A.THz detectors[J].Progress in Quantum Electronics,2010,34(5):278-347.
    [5]Liu H C,Song C Y,SpringThorpe A J.Terahertz quantum-well photodetector[J].Applied Physics Letters,2004,84(20):4068-4070.
    [6]Zhang Y H,Cao J C,Feng S L,et al.Dynamical instability and switching of resonant tunneling device under terahertz radiation[J].Journal of Applied Physics,2005,98(3):033718.
    [7]Buot F A,Rajagopal A K.High-frequency behavior of quantum-based devices:equivalent-circuit,nonperturbative-response,and phase-space analyses[J].Physical Review B:Condensed Matter and Materials Physics,1993,48(23):17217-17232.
    [8]Wu Y B,Yang R X,Yang K W,et al.Design and fabrication of GaAs-based RTD based on coherent resonant tunneling theory[J].Journal of Optoelectronics·Laser,2011,22(2):189-192.武一宾,杨瑞霞,杨克武,等.基于共振隧穿理论的GaAs基RTD的设计与研制[J].光电子·激光,2011,22(2):189-192.
    [9]Guo W L.Resonant tunneling devices and applications[M].Beijing:Science Press,2009:10.郭维廉.共振隧穿器件及其应用[M].北京:科学出版社,2009:10.
    [10]Niu Z C,Han Q,Ni H Q,et al.Material growth and device fabrication of GaAs based 1.3μm GaInNAs quantum well laser diodes[J].Chinese Journal of Semiconductors,2005,26(9):1860-1864.
    [11]Dong Y,Wang G L,Ni H Q,et al.Optimization of molecular beam epitaxy conditions of resonant tunneling diode photodetector[J].Chinese Journal of Lasers,2015,42(8):0817001.董宇,王广龙,倪海桥,等.共振隧穿弱光探测器的分子束外延生长条件优化[J].中国激光,2015,42(8):0817001.
    [12]jefors E,Lisauskas A,Glaab D,et al.Terahertz imaging detectors in CMOS technology[J].Journal of Infrared,Millimeter,and Terahertz Waves,2009,30(12):1269-1280.
    [13]Tong J C,Huang J G,Huang Z M.New type terahertz/sub-millimeter wave detector based on InGaAs layers[J].Infrared and Laser Engineering,2014,43(10):3347-3351.童劲超,黄敬国,黄志明.基于铟镓砷材料的新型太赫兹/亚毫米波探测器研究[J].红外与激光工程,2014,43(10):3347-3351.
    [14]Sun Y F,Tao C B,Sun J D,et al.Filter-enhanced high-sensitivity HEMT terahertz detector at room temperature[J].Acta Optica Sinica,2018,38(3):0304001.孙云飞,陶重犇,孙建东,等.滤波器增强的高灵敏度室温HEMT太赫兹探测器[J].光学学报,2018,38(3):0304001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700