Two Preparation Methods-dominated Cd~(Ⅱ)-Based Coordination Polymers with Mixed Adenine Nucleobase and 5-Nitroisophathalate Ligands: Synthesis, Structure and Fluorescence
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Two Preparation Methods-dominated Cd~(Ⅱ)-Based Coordination Polymers with Mixed Adenine Nucleobase and 5-Nitroisophathalate Ligands: Synthesis, Structure and Fluorescence
  • 作者:刘正宇 ; 付敏 ; 王修光 ; 王丽丽 ; 杨恩翠 ; 赵小军
  • 英文作者:LIU Zheng-Yu;FU Min;WANG Xiu-Guang;WANG Li-Li;YANG En-Cui;ZHAO Xiao-Jun;College of Chemistry, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry,Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University;
  • 英文关键词:adenine nucleobase;;coordination polymer;;crystal structure;;fluorescence
  • 中文刊名:JGHX
  • 英文刊名:结构化学(英文版)
  • 机构:College of Chemistry, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry,Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University;
  • 出版日期:2019-04-15
  • 出版单位:Chinese Journal of Structural Chemistry
  • 年:2019
  • 期:v.38;No.294
  • 基金:supported by the National Natural Science Foundation of China(Nos.21571140 and 21671149);; the Program for Innovative Research Team in University of Tianjin(TD13-5074)
  • 语种:英文;
  • 页:JGHX201904014
  • 页数:8
  • CN:04
  • ISSN:35-1112/TQ
  • 分类号:136-143
摘要
Two new CdⅡ-based coordination polymers(CPs) with mixed adenine(Hade) nucleobase and 5-nitroisophathalate(nip) ligands, {[Cd(Hade)_(0.5)(H_2O)_2(nip)]·H_2O}n 1 and {[Cd(Hade)(H_2O)_(1.25)(CH_3OH)0.75(nip)]·0.75 CH_3OH·0.5H_2 O}_n 2, were successfully obtained by varying the preparation methods and structurally characterized. Crystal data for 1: monoclinic, C2/c space group with a = 10.5546(6), b = 17.3496(6), c = 16.1198(9) ?, β = 104.2800(10)o, V = 2860.6(2) ?3, Dc = 2.058 g/cm~3, Mr = 443.13, Z = 8, F(000) = 1752, μ = 1.585 mm~(–1), the final R = 0.0394 and wR = 0.1109 for 2285 observed reflections with I > 2σ(I). For 2: triclinic, P1 space group with a = 10.2032(7), b = 10.5098(8), c = 11.0223(8) ?, a = 65.7050(10)o, β = 74.5750(10)o, g = 61.5280(10)o, V = 943.38(12) ?~3, Dc = 1.888 g/cm3, Mr = 536.24, Z = 2, F(000) = 537, μ = 1.225 mm~(–1), the final R = 0.0225 and wR = 0.0702 for 3143 observed reflections with I > 2σ(I). 1 presents a crisscrossed layer with mutually orthogonal {Cd(nip)} chains aggregated by neutral m-N(7),N(9)-Hade connector. By contrast, 2 displays a linear chain with CdⅡ ions extended by bis-bidentate chelating-nip2–connectors, which are further assembled into a broad ribbon by N-H···N hydrogen-bonding interactions. Additionally, the two solid-state samples with comparable thermal stability exhibit favorable luminescent emissions at room temperature, suggesting their potential applications as fluorescence materials.
        Two new CdⅡ-based coordination polymers(CPs) with mixed adenine(Hade) nucleobase and 5-nitroisophathalate(nip) ligands, {[Cd(Hade)_(0.5)(H_2O)_2(nip)]·H_2O}n 1 and {[Cd(Hade)(H_2O)_(1.25)(CH_3OH)0.75(nip)]·0.75 CH_3OH·0.5H_2 O}_n 2, were successfully obtained by varying the preparation methods and structurally characterized. Crystal data for 1: monoclinic, C2/c space group with a = 10.5546(6), b = 17.3496(6), c = 16.1198(9) ?, β = 104.2800(10)o, V = 2860.6(2) ?3, Dc = 2.058 g/cm~3, Mr = 443.13, Z = 8, F(000) = 1752, μ = 1.585 mm~(–1), the final R = 0.0394 and wR = 0.1109 for 2285 observed reflections with I > 2σ(I). For 2: triclinic, P1 space group with a = 10.2032(7), b = 10.5098(8), c = 11.0223(8) ?, a = 65.7050(10)o, β = 74.5750(10)o, g = 61.5280(10)o, V = 943.38(12) ?~3, Dc = 1.888 g/cm3, Mr = 536.24, Z = 2, F(000) = 537, μ = 1.225 mm~(–1), the final R = 0.0225 and wR = 0.0702 for 3143 observed reflections with I > 2σ(I). 1 presents a crisscrossed layer with mutually orthogonal {Cd(nip)} chains aggregated by neutral m-N(7),N(9)-Hade connector. By contrast, 2 displays a linear chain with CdⅡ ions extended by bis-bidentate chelating-nip2–connectors, which are further assembled into a broad ribbon by N-H···N hydrogen-bonding interactions. Additionally, the two solid-state samples with comparable thermal stability exhibit favorable luminescent emissions at room temperature, suggesting their potential applications as fluorescence materials.
引文
(1)Patel,D.K.;Domínguez-Martín,A.;Brandi-Blanco,M.P.;Choquesillo-Lazarte,D.;Nurchi,V.M.;Niclós-Gutiérrez,J.Metal ion binding modes of hypoxanthine and xanthine versus the versatile behaviour of adenine.Coord.Chem.Rev.2012,256,193-211.
    (2)Aoki,K.;Fujisawa,I.;Murayama,K.;Hu,N.H.Stereospecific intra-molecular interligand interactions affecting base-specific metal bonding to purine nucleobases in the solid state.Coord.Chem.Rev.2013,257,2798-2813.
    (3)García-Terán,J.P.;Castillo,O.;Luque,A.;García-Couceiro,U.;Beobide,G.;Román,P.Molecular recognition of adeninium cations on anionic metal-oxalato frameworks:an experimental and theoretical analysis.Inorg.Chem.2007,46,3593-3602.
    (4)Choquesillo-Lazarte,D.;Brandi-Blanco,M.P.;García-Santos,I.;González-Pérez,J.M.;Casti?eiras,A.;Niclós-Gutiérrez,J.Interligand interactions involved in the molecular recognition between copper(II)complexes and adenine or related purines.Coord.Chem.Rev.2008,252,1241-1256.
    (5)González-Pérez,J.M.;Choquesillo-Lazarte,D.;Domínguez-Martín,A.;El Bakkali,H.;García-Rubi?o,M.E.;Pérez-Toro,I.;Vílchez-Rodríguez,E.;Casti?eiras,A.;Nurchi,V.M.;Niclós-Gutiérrez,J.Molecular recognition between adenine or 2,6-diaminopurine and copper(II)chelates with N,O2,S-tripodal tetradentate chelators having thioether or disulfide donor groups.J.Inorg.Biochem.2015,151,75-86.
    (6)Verma,S.;Mishra,A.K.;Kumar,J.The many facets of adenine:coordination,crystal patterns,and catalysis.Acc.Chem.Res.2010,43,79-91.
    (7)Albo,J.;Vallejo,D.;Beobide,G.;Castillo,O.;Casta?o,P.;Irabien,A.Copper-based metal-organic porous materials for CO2 electrocatalytic reduction to alcohols.ChemSusChem.2017,10,1100-1109.
    (8)Yang,E.C.;Liu,Z.Y.;Liu,Z.Y.;Zhao,L.N.;Zhao,X.J.Long-range ferromagnetic ordering in a 3D CuII-tetracarboxylate framework assisted by an unprecedented bidentateμ2-O1,N4 hypoxanthine nucleobase.Dalton Trans.2010,39,8868-8871.
    (9)Yang,E.C.;Liu,Z.Y.;Zhang,L.;Yang,N.;Zhao,X.J.Magnetic behaviours dominated by the interplay of magnetic anisotropy and exchange coupling in the local CoII7 discs.Dalton Trans.2016,45,8134-8141.
    (10)Pérez-Aguirre,R.;Beobide,G.;Castillo,O.;de Pedro,I.;Luque,A.;Pérez-Yá?ez,S.;Rodríguez Fernández,J.;Román,P.3D magnetically ordered open supramolecular architectures based on ferrimagnetic Cu/adenine/hydroxide heptameric wheels.Inorg.Chem.2016,55,7755-7763.
    (11)An,J.;Shade,C.M.;Chengelis-Czegan,D.A.;Petoud,S.;Rosi,N.L.Zinc-adeninate metal-organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations.J.Am.Chem.Soc.2011,133,1220-1223.
    (12)Joarder,B.;Desai,A.V.;Samanta,P.;Mukherjee,S.;Ghosh,S.K.Selective and sensitive aqueous-phase detection of 2,4,6-trinitrophenol(TNP)by an amine-functionalized metal-organic framework.Chem.Eur.J.2015,21,965-969.
    (13)Wang,C.;Tian,L.;Zhu,W.;Wang,S.Q.;Wang,P.;Liang,Y.;Zhang,W.L.;Zhao,H.W.;Li,G.T.Dye@bio-MOF-1 composite as a dual-emitting platform for enhanced detection of a wide range of explosive molecules.ACS Appl.Mater.Inter.2017,9,20076-20085.
    (14)Rachuri,Y.;Parmar,B.;Bisht,K.K.;Suresh,E.Multiresponsive adenine-based luminescent Zn(II)coordination polymer for detection of Hg2+and trinitrophenol in aqueous media.Cryst.Growth Des.2017,17,1363-1372.
    (15)An,J.;Farha,O.K.;Hupp,J.T.;Pohl,E.;Yeh,J.I.;Rosi,N.L.Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework.Nat.Commun.2012,3,604-6.
    (16)(a)An,J.;Geib,S.J.;Rosi,N.L.High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine-and amino-decorated pores.J.Am.Chem.Soc.2010,132,38-39.(b)Li,T.;Chen,D.L.;Sullivan,J.E.;Kozlowski,M.T.;Johnson,J.K.;Rosi,N.L.Systematic modulation and enhancement of CO2:N2 selectivity and water stability in an isoreticular series of bio-MOF-11 analogues.Chem.Sci.2013,4,1746-1755.
    (17)Fu,H.R.;Zhang,J.Flexible porous zinc-pyrazole-adenine framework for hysteretic sorption of light hydrocarbons.Cryst.Growth Des.2015,15,1210-1213.
    (18)Yang E.C.;Chan,Y.N.;Liu,H.;Wang,Z.C.;Zhao,X.J.Unusual polymeric ZnII/CdII complexes with 2,6-diaminopurine by synergistic coordination,of nucleobases and polycarboxylate anions:binding behavior,self-assembled pattern of the nucleobase,and luminescent properties.Cryst.Growth Des.2009,9,4933-4944.
    (19)Liu,Z.Y.;Dong,H.M.;Wang,X.G.;Zhao,X.J.;Yang,E.C.Three purine-containing metal complexes with discrete binuclear and polymeric chain motifs:synthesis,crystal structure and luminescence.Inorg.Chim.Acta 2014,416,135-141.
    (20)Liu,Z.Y.;Zhang,H.Y.;Yang,E.C.;Liu,Z.Y.;Zhao,X.J.A(3,6)-connected layer with an unprecedented adeninate nucleobase-derived heptanuclear disc.Dalton Trans.2015,44,5280-5283.
    (21)Sheldrick,G.M.SADABS,Program for Empirical Absorption Correction of Area Detector Data.University of G?ttingen,Germany 1996.
    (22)SAINT,Software Reference Manual.Bruker AXS,Madison,WI 1998.
    (23)Sheldrick,G.M.SHELXS-97,Program for X-ray Crystal Structure Solution.University of G?ttingen,Germany 1997.
    (24)(a)Sheldrick,G.M.SHELXL-97,Program for X-ray Crystal Structure Refinement.University of G?ttingen,Germany 1997.(b)Sheldrick,G.M.Crystal structure refinement with SHELXL.Acta Cryst.2015,C71,3-8.
    (25)Nakamoto,K.Infrared and Raman Spectra of Inorganic and Coordination Compounds.Fourth Ed,Wiley Press,New York 1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700