翅片同心管吸附器解吸过程传热性能实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Study on Heat Transfer of Finned Concentric Tube Adsorbers During Desorption Processes
  • 作者:许强强 ; 季旭 ; 刘佳星 ; 李海丽 ; 王进康 ; 杨昌春
  • 英文作者:XU Qiang-qiang;JI Xu;LIU Jia-xing;LI Hai-li;WANG Jin-kang;YANG Chang-chun;National Solar Water Heater Quality Supervision and Testing Center, Solar Energy Research Institute, School of Energy and Environmental Science, Yunnan Normal University;
  • 关键词:翅片同心管吸附器 ; 加热解吸 ; 脱附热 ; 吸附剂 ; 传质通道
  • 英文关键词:finned concentric tube adsorber;;heating desorption;;desorption heat;;adsorbent;;mass transfer channel
  • 中文刊名:GXHX
  • 英文刊名:Journal of Chemical Engineering of Chinese Universities
  • 机构:云南师范大学能源与环境科学学院太阳能研究所国家太阳能热水器质量监督检测中心;
  • 出版日期:2017-12-28 09:56
  • 出版单位:高校化学工程学报
  • 年:2018
  • 期:v.32
  • 基金:国家自然科学基金(51366014);; 2014年国家级大学生创新创业训练计划(201410681005)
  • 语种:中文;
  • 页:GXHX201801012
  • 页数:8
  • CN:01
  • ISSN:33-1141/TQ
  • 分类号:90-97
摘要
为了研究翅片同心管吸附器在加热解吸过程中的传热性能,采用水浴式加热方法对30、40、50 cm三种高度不同的翅片同心管吸附器进行了实验研究。研究结果表明:在加热解吸的过程中,吸附质的脱附热随着吸附剂温度的升高而增大;在相同吸附剂温度下,冷凝管的冷凝温度越低,吸附质的脱附热越大;翅片同心管内吸附剂和吸附质的显热随吸附剂温度的升高而增大,且在相同温度下,吸附剂的显热远大于吸附质的显热;翅片同心管内传质通道的温度与吸附管中段的吸附剂温度最为接近,两者的温度相差0.1~1.5℃;与30、50 cm翅片同心管吸附器相比,40 cm翅片同心管吸附器传质通道内温度的变异系数相对比较稳定。
        In order to enhance heat transfer in finned concentric tube adsorbers during desorption processes, the heat transfer performance of finned concentric tube adsorbers with different heights of 30 cm, 40 cm and 50 cm were studied with water-bath heating. The results show that the desorption heat of the adsorbate increases with the increase of adsorbent temperature. Under same adsorbent temperature, lower condensing temperature results in higher desorption heat of the adsorbate. The sensible heats of adsorbent and adsorbate increase with the increase of adsorbent temperature in the concentric tube. Moreover, the sensible heat of the adsorbent is much larger than that of the adsorbate under same temperature. The temperature of the mass transfer channel in the finned concentric tube is close to the temperature in the middle of the adsorbent, with temperature difference of 0.1~1.5℃. Compared with the 30 and 50 cm finned concentric tube adsorbers, the temperature variation coefficient in the mass transfer channel of the 40 cm finned concentric tube adsorber is relatively more stable.
引文
[1]MA You-fu(马有福),YUAN Yi-chao(袁益超),LIU Yu-zheng(刘聿拯),et al.Experimental studies on the effects of transverse pitch on heat transfer and flow resistance characteristics of serrated spiral finned tube banks(横向节距对锯齿螺旋翅片换热管特性影响的实验研究)[J].Proceedings of the CSEE(中国电机工程学报),2011,31(8):67-72.
    [2]He Y L,Chu P,Tao W Q,et al.Analysis of heat transfer and pressure drop for fin-and-tube heat exchangers with rectangular winglet-type vortex generators[J].Applied Thermal Engineering,2013,61(2):770-783.
    [3]WEN Jian(文键),YANG Hui-zhu(杨辉著),XUE Yu-lan(薛玉兰),et al.Experimental investigation on heat transfer performance of heat exchanger with ladder-type fold baffles(旋梯式螺旋折流板换热器换热性能的实验研究)[J].Journal of Chemical Engineering of Chinese Universities(高校化学工程学报),2015,29(4):795-801.
    [4]ZHANG Li(张丽),TIAN Mi-mi(田密密),WU Jian-hua(吴剑华).Heat transfer performance of the shell side of double-pipe heat exchanger enhanced with helical fins(螺旋片强化的套管式换热器壳侧传热特性)[J].Journal of Chemical Engineering of Chinese Universities(高校化学工程学报),2011,25(1):24-29.
    [5]QIU Yan(邱燕),TIAN Mao-cheng(田茂诚),LENG Xue-li(冷学礼).Heat transfer characteristic of longitudinal externally-finned tube in closed space(封闭空间内纵向外翅片管结构参数对传热的影响)[J].CIESC Journal(化工学报),2013,64(7):2405-2410.
    [6]LI Fei(李飞),SHI Yue-tao(史月涛),SUN Feng-zhong(孙奉仲),et al.Experimental research on heat transfer and resistance characteristics of H-type finned elliptical tubes(H型翅片椭圆管束传热及阻力特性的试验研究)[J].Proceedings of the CSEE(中国电机工程学报),2014,34(14):2261-2266.
    [7]ZHANG Li(张利),YANG Kun(杨昆),LIU Wei(刘伟).Numerical study on flow and heat transfer in an elliptical and circular finned tube(椭圆形和圆形翅片管流动与传热的数值研究)[J].Journal of Engineering Thermophysics(工程热物理学报),2009,30(9):1571-1574.
    [8]CHEN Huan-xin(陈焕新),WEI Li(魏莉),ZHANG Chuo(张绰),et al.Heat transfer characteristics and enhancement of shell and tube adsorbent beds(壳管式吸附床传热特性及其强化传热研究)[J].Journal of Hua Zhong University of Science and Technology(华中科技大学学报),2012,40(10):44-48.
    [9]MA Ting(马挺),ZENG Min(曾敏),XIE Gong-nan(谢公南),et al.Numerical study on heat transfer and pressure drop characteristics of plain-finned tube under high temperature(高温下平直翅片管传热与阻力特性的数值研究)[J].Journal of Engineering Thermophysics(工程热物理学报),2010,31(9):1571-1574.
    [10]ZHANG Jing(张璟),LI Yan-jun(李宴君),WEN Juan(温娟),et al.Flow and heat transfer characteristics comparison between flat wave-fin tube and corrugated-fin flat tube(平直翅片管与波浪翅片管流动换热性能比较)[J].Journal of Engineering Thermophysics(工程热物理学报),2011,32(8):1368-1370.
    [11]LI Ming(李明).Study on solid adsorption refrigeration cycle based on solar energy utilization(基于太阳能利用的固体吸附式制冷循环研究)[D].Shanghai(上海)Shanghai Jiao Tong University(上海交通大学),1999.
    [12]Leite A P F,Daguenet M.Performance of a new solid adsorption ice maker with solar energy regeneration[J].Energy Conversion and Management,2000,41(15):1625-1647.
    [13]SONG Xiang-bo(宋向波).Design and performance characteristics of solar water bath solid adsorption refrigeration system(太阳能水浴式固体吸附制冷系统设计及性能特性研究)[D]Kunming(昆明):Yunnan Normal University(云南师范大学),2016.
    [14]FAN Jie-qing(范介清),LUO Bin(罗斌),WANG Liu-ling(王六玲),et al.Study on the performance of the integral finned tube heat and mass transfer enhanced solar adsorption cooling system(翅片管整体传热传质强化的太阳能吸附式制冷系统性能研究)[J].Acta Energiae Solaris Sinica(太阳能学报),2014,35(9):1663-1669.
    [15]Ji X,Li M,Fan J Q,et al.Structure optimization and performance experiments of a solar-powered finned-tube adsorption refrigeration system[J].Applied Energy,2014,113:1293-1300.
    [16]Thimmaiah P C,Sharafian A,Huttema W,et al.Performance of finned tubes used in low-pressure capillary-assisted evaporator of adsorption cooling system[J].Applied Thermal Engineering,2016,106:371-380.
    [17]Louajari M,Mimet A,Ouammi A.Study of the effect of finned tube adsorber on the performance of solar driven adsorption cooling machine using activated carbon-ammonia pair[J].Applied Energy,2011,88(3):690-698.
    [18]Saw V K,Ahmad I,Mandal A,et al.Methane hydrate formation and dissociation in synthetic seawater[J].Journal of Natural Gas Chemistry,2012,21(6):625-632.
    [19]XU Sheng-zhi(徐圣知),WANG Li-wei(王丽伟),WANG Ru-zhu(王如竹).Thermodynamic analysis of mass and heat recovery adsorption refrigeration cycles and scheme selection(回质回热吸附式制冷循环的热力学分析与方案优选)[J].CIESC Journal(化工学报),2016,67(6):2202-2210.
    [20]Di J,Wu J Y,Xia Z Z,et al.Theoretical and experimental study on characteristics of a novel silica gel-water chiller under the conditions of variable heat source temperature[J].International Journal of Refrigeration,2007,30(3):515-526.
    [21]Critoph R E.Performance limitations of adsorption cycles for solar cooling[J].Soar Energy,1988,41(1):21-31.
    [22]Tamainot-Telto Z,Critoph R E.Adsorption refrigerator using monolithic carbon-ammonia pair[J].International Journal of Refrigeration,1997,20(2):146-155.
    [23]Ramirez-Pastor A J,Bulnes F.Different heat of adsorption in the presence of an order-disorder phase transition[J].Physica A,2000,283:198-203.
    [24]TENG Yi(滕毅),WANG Ru-zhu(王如竹),WU Jing-yi(吴静怡),et al.Theoretical analysis of adsorption refrigeration/heat pump cycle(对吸附式制冷/热泵循环的理论分析)[J].Acta Energiae Solaris Sinica(太阳能学报),1997,18(1):22-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700