多物理域质子交换膜燃料电池建模仿真及实验测试
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multi-physical Modeling Simulation and Experimental Test of Proton Exchange Membrane Fuel Cell
  • 作者:马睿 ; 皇甫宜耿 ; 赵冬冬 ; 高非
  • 英文作者:MA Rui;HUANGFU Yigeng;ZHAO Dongdong;GAO Fei;School of Automation,Northwestern Polytechnical University;Femto-ST Institute,UTBM,CNRS;
  • 关键词:燃料电池 ; 多物理域 ; 精确建模 ; 仿真测试
  • 英文关键词:fuel cell;;multi-physical;;accurate modeling;;simulation test
  • 中文刊名:DYXB
  • 英文刊名:Journal of Power Supply
  • 机构:西北工业大学自动化学院;FEMTO-ST Institute,UTBM,CNRS;
  • 出版日期:2019-03-15
  • 出版单位:电源学报
  • 年:2019
  • 期:v.17;No.82
  • 基金:陕西省国际合作研究重点计划资助项目(2017KW-ZD-05)~~
  • 语种:中文;
  • 页:DYXB201902002
  • 页数:9
  • CN:02
  • ISSN:12-1420/TM
  • 分类号:7-15
摘要
燃料电池及其应用近些年逐渐成为研究热点,对于系统级的燃料电池运行工况分析及设计,底层的燃料电池本体模型显得至关重要。相比于已有的传统经验模型,重点提出了一种一般性的多物理域燃料电池分析模型,并从电化学域、流体力学域以及热力学动态域对质子交换膜燃料电池进行了精确建模。所提出的框架性建模方法可以适用于不同型号的质子交换膜燃料电池,同时也可以进一步拓展并应用于不同种类的燃料电池。随后以Ballard NEXA 1.2 kW质子交换膜燃料电池为例,对模型在不同工况下进行了仿真,并通过实验测试验证了所提出模型的有效性和准确性。在此基础上,可以展开相应的控制策略及电池本体运行分析,从而提升燃料电池系统的运行性能和工作寿命。
        Fuel cell and its applications have gradually drawn research attention in recent years. The fundamental fuel cell model is of great importance to the analysis of the operation condition of a fuel cell system and its design. In comparison to the existing traditional empirical model, a general multi-physical fuel cell analytical model was proposed in this paper, and the accurate modeling of a proton exchange membrane fuel cell(PEMFC) was performed in electrochemical, fluidic, and thermal dynamic domains. The proposed framed modeling approach can not only be applied to different kinds of PEMFCs, but also be further extended and applied to different kinds of fuel cells. Afterwards, based on the Ballard NEXA 1.2 kW PEMFC, simulations were conducted under varying operation conditions, and the effectiveness and accuracy of the proposed model were verified through experimental tests. On this basis, the corresponding control strategy and the operation of fuel cell itself can be analyzed to enhance the operation performance of the fuel cell system and extend its lifespan.
引文
[1]Ma Rui,Gao Fei,Breaz E,et al.Multidimen sional reversible solid oxide fuel cell modeling for embedded applications[J].IEEE Transactions on Energy Conversion,2018,33(2):692-701.
    [2]Gao Fei,Blunier B,Miraoui A.Proton exchange membrane fuel cells modeling[M].New York:John Wiley&Sons,2013.
    [3]Amphlett J C,Baumert R M,Mann R F,et al.Performance modeling of the ballard Mark IV solid polymer electrolyte fuel cell[J].Journal of the Electrochemical Society,1995,142(1):1-8.
    [4]Springer T E,Zawodzinski T A,Gottesfeld S.Polymer electrolyte fuel cell model[J].Journal of the Electrochemical Society,1991,138(8):2334-2342.
    [5]Schetz J A,Fuhs A E.Handbook of Fluid Dynamics and Fluid Machinery[M].Hoboken,NJ:Wiley,1996.
    [6]Bernardi D M,Verbrugge M W.Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte[J].AIChE Journal,1991,37(8):1151-1163.
    [7]Bird R,Stewart W,Lightfoot E.Transport Phenomena[M].2nd ed.Hoboken,NJ:Wiley,2002.
    [8]O’Hayre R P,Cha S W,Colella W,et al.Fuel Cell Fundamentals[M].Hoboken,NJ:Wiley,2006.
    [9]Incropera F P,DeWitt D P,Bergman T L,et al.Fundamentals of Heat and Mass Transfer[M].6th ed.Hoboken,NJ:Wiley,2007.
    [10]Gao Fei,Blunier B,Miraoui A,et al.Cell layer level generalized dynamic modeling of a PEMFC stack using VHDL-AMS language[J].International Journal of Hydrogen Energy,2009,34(13):5498-5521.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700