一种宽温度范围低温度系数的CMOS带隙基准电路
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A wide-temperature-range CMOS bandgap reference circuit with low temperature coefficient
  • 作者:任贺宇 ; 王军 ; 赵传阵
  • 英文作者:REN Heyu;WANG Jun;ZHAO Chuanzhen;College of Electronics and Information Engineering,Tianjin Polytechnic University;Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems,Tianjin Polytechnic University;
  • 关键词:带隙基准 ; 高阶非线性补偿 ; 5段分段补偿 ; 温度系数 ; 电源抑制比
  • 英文关键词:bandgap reference;;high-order nonlinear compensation;;5-segment piecewise compensation;;temperature coefficient (TC);;power supply rejection ratio (PSRR)
  • 中文刊名:TJSD
  • 英文刊名:Journal of Tianjin Normal University(Natural Science Edition)
  • 机构:天津工业大学电子与信息工程学院;天津工业大学天津市光电探测技术与系统重点实验室;
  • 出版日期:2019-03-30
  • 出版单位:天津师范大学学报(自然科学版)
  • 年:2019
  • 期:v.39
  • 基金:天津市应用基础与前沿技术研究计划资助项目(15JCYBJC51900);; 天津工业大学研究生科技创新活动计划资助项目(17121)
  • 语种:中文;
  • 页:TJSD201902014
  • 页数:5
  • CN:02
  • ISSN:12-1337/N
  • 分类号:73-77
摘要
为得到适用于温度传感器、AD/DA和LDO等精密系统的高精度基准电压,提出基于高阶非线性补偿的5段分段补偿技术,在-40~125℃的宽温度范围内,实现一种高精度带隙基准(BGR)电路. 5段分段补偿技术基于电流镜组合构成的电流加减电路实现. BGR电路基于3.3 V电源供电的0.18μm CMOS工艺完成设计.仿真结果表明,所设计BGR电路的温度系数(TC)为0.05×10~(-6)/℃,工作电流约为28μA,电源抑制比(PSRR)约为-100 dB@dc,线性调整率约为11.8μV/V.
        In order to obtain the high-precision reference voltage suitable for precision systems,such as temperature sensors,AD/DA,LDO,a high-precision bandgap reference(BGR)circuit is proposed with an innovative 5-segment piecewise compensation method based on high-order nonlinear compensation over a wide temperature range of -40 to 125 ℃. The 5-segment piecewise compensation method is implemented based on the current addition and subtraction circuits designed by the combi-nation of current mirrors. The BGR circuit is designed in 0.18 μm CMOS process with 3.3 V voltage supply. The simulation results show that the 5-segment piecewise compensation optimizes the temperature coefficient(TC) of BGR to 0.05 × 10~(-6)/℃.The operating current is about 28 μA,the power supply rejection ratio(PSRR) is about-100 dB@dc and the linearity is about 11.8 μV/V.
引文
[1]JIANG J,SHU W,CHANG J S.A 5.6 ppm/℃temperature coefficient87 d B PSRR Sub-1-V voltage reference in 65 nm CMOS exploiting the zero-temperature-coefficient point[J].IEEE Journal of Solid-State Circuits,2017,53(3):623-633.
    [2]BENDALI A,AUDET Y.A 1-V CMOS current reference with temperature and process compensation[J].Circuits and Systems I:Regular Papers,IEEE Transactions on,2007,54(7):1424-1429.
    [3]MA B,YU F Q.A novel 1.2 v 4.5 ppm/℃curvature-compensated CMOSbandgap reference[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2014,61(4):1026-1035.
    [4]CHEN H M,LEE C C,JHENG S H,et al.A sub-1 ppm/°C precision bandgap reference with adjusted-temperature-curvature compensation[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2017,64(6):1308-1317.
    [5]DUAN Q Z,ROH J.A 1.2 V 4.2 ppm/℃high-order curvature-compensated CMOS bandgap reference[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2015,62(3):662-670.
    [6]ZHOU Z K,SHI Y,HUANG Z,et al.A 1.6 V 25μA 5 ppm/℃curvature-compensated reference[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2012,59(4):677-684.
    [7]PERRY R T,LEWIS S H,BROKAW A P,et al.A 1.4 V supply CMOSfractional bandgap reference[J].IEEE Journal of Solid-State Circuits,2007,42(10):2180-2186.
    [8]RINCON-MORA G,ALLEN P.A 1.1 V current-mode and piecewise linear curvature-corrected bandgap reference[J].IEEE Journal of SolidState Circuits,1998,33(10):1551-1554.
    [9]LI J H,ZHANG X B,YU M Y.A 1.2 V piecewise curvature corrected bandgap reference in 0.5μm CMOS process[J].IEEE Transactions on Very Large Scale Integration(VLSI)Systems,2011,19(6):1118-1122.
    [10]MALCVATI P,MALOBERTI F.Curvature-compensated BiCMOS bandgap with 1 V supply voltage[J].IEEE Journal of Solid-State Circuits,2001,36(7):1076-1081.
    [11]LEUNG K N,MOK P K T,LEUNG C Y.A 2 V,23μV,5.3 ppm/℃curvature-compensated CMOS bandgap voltage reference[J].IEEE Journal of Solid-State Circuits,2003,38(3):561-564.
    [12]BANBA H,SHIGA H,UMEZAWA A,et al.A CMOS bandgap reference circuit with sub-1-V operation[J].IEEE Journal of Solid-State Circuits,1999,34(5):670-674.
    [13]GUNAWAN M,MEIJER G C M,FONDERIE J,et al.A curvaturecorrected low-voltage bandgap reference[J].IEEE Journal of Solid-State Circuits,1993,28(6):667-670.
    [14]TSIVIDIS Y P.Accurate analyzes of temperature effects in IC-VBEcharacteristics with application to bandgap reference sources[J].IEEE Journal of Solid-State Circuits,1980,15(6):1076-1084.
    [15]秦波,贾晨,陈志良,等.1 V电压非线性补偿的高温度稳定性电压带隙基准源[J].半导体学报,2006,27(11):2035-2038.QING B,JIA C,CHEN Z L,et al.A 1V MNC bandgap reference with high temperature stability[J].Chinese Journal of Semicond Uctors,2006,27(11):2035-2038(in Chinese).
    [16]ANDREOU M C,KOUDOUNAS S,GEORGIOU J.A novel wide-temperature-range,3.9 ppm/℃CMOS bandgap reference circuit[J].IEEEJournal of Solid-State Circuits,2012,47(2):574-581.
    [17]IVANOV V,BREDERLOW R,GERBER J.An ultra low power bandgap operational at supply from 0.75 V[J].IEEE Journal of Solid-State Circuits,2012,47(7):1515-1523.
    [18]OSAKI Y,HIROSE T,KUROKI N,et al.1.2 V supply 100 nW 1.09 Vbandgap and 0.7 V supply 52.5 nW 0.55 V subbandgap reference circuits for nanowatt CMOS LSIs[J].IEEE Journal of Solid-State Circuits,2013,48(6):1530-1538.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700