基因芯片检测技术在结核病诊断中的应用价值
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Clinical application value of gene chip technology in the diagnosis and treatment of tuberculosis
  • 作者:张桂仙 ; 高丽 ; 谢祺 ; 张米 ; 李正伦 ; 姚之莹
  • 英文作者:ZHANG Gui-xian;GAO Li;XIE Qi;ZHANG Mi;LI Zheng-lun;YAO Zhi-ying;Yunnan Provincial Infectious Disease Hospital;
  • 关键词:基因芯片技术 ; 结核分枝杆菌 ; 耐药性检测 ; 利福平 ; 临床应用价值
  • 英文关键词:Gene chip technology;;Mycobacterium tuberculosis(MTB);;Drug resistance detection;;Rifampicin;;Clinical application value
  • 中文刊名:HAIN
  • 英文刊名:Hainan Medical Journal
  • 机构:云南省传染病专科医院;
  • 出版日期:2019-01-25
  • 出版单位:海南医学
  • 年:2019
  • 期:v.30
  • 基金:云南省科技计划项目(编号:2016BC005);; 云南省卫生科技计划项目(编号:2016NS299)
  • 语种:中文;
  • 页:HAIN201902016
  • 页数:4
  • CN:02
  • ISSN:46-1025/R
  • 分类号:63-66
摘要
目的探讨基因芯片检测技术对分枝杆菌菌种鉴定和结核分枝杆菌耐药性检测的临床应用价值。方法收集云南省传染病专科医院2012年9月至2017年12月收治的患者阳性培养标本及抗酸染色阳性标本378例,用基因芯片检测系统分别进行分枝杆菌菌种鉴定、结核分枝杆菌的利福平和异烟肼耐药性检测。结果 378例标本鉴定为结核分枝杆菌复合群282株,检出率为74.6%(282/378);非结核分枝杆菌58株,检出率为15.3%(58/378),其中鸟分枝杆菌居多,占72.4%(42/58)。检测标本数最多的是痰液(61.7%),阳性培养物次之(25.4%)。结核分枝杆菌耐药检测结果显示,18株单耐利福平、12株单耐异烟肼、35株耐多药。利福平以rpoB531位点突变频率较高,为49.1%;526位点次之,为20.7%。异烟肼以KatG315(G→C)位点突变频率较高,达89.4%。结论基因芯片检测技术能够快速、准确地对结核分枝杆菌、非结核分枝杆菌进行鉴定;能够对结核分枝杆菌进行利福平和异烟肼的耐药检测,并能用于多种类型标本检测,是结核病、非结核分枝杆菌感染诊治值得推广的检测方法。
        Objective To discuss the clinical value of gene chip technology in the identification of Mycobacterium and drug resistance of Mycobacterium tuberculosis(MTB). Methods A total of 378 samples of positive culture and acid-fast staining were collected from Yunnan Provincial Infectious Disease Hospital from September 2012 to December2017. The identification of Mycobacteria and detection of rifampicin and isoniazid resistance in Mycobacterium tuberculosis were performed by gene chip detection system. Results Among the 378 samples, 282 strains(74.6%) were identified as Mycobacterium tuberculosis complex group, 58 strains(15.3%) were nontuberculous mycobacteria(NTM), and72.4%(42/58) were Mycobacterium avium. Sputum was the most detected sample(61.7%), followed by positive culture(25.4%). The results showed that 18 strains were resistant to rifampicin, 12 strains were resistant to isoniazid, and 35 strains were multidrug resistant. The frequency of rifampicin mutation at rpoB531 locus was 49.1%, followed by 20.7%at rpoB526 locus. The mutation frequency of isoniazid at katG315(G) was 89.4%. Conclusion Gene chip technology can identify MTB and NTM rapidly and accurately. It can be detected rifampin and isoniazid resistance in MTB, and also can be used for various of specimens. It is a diagnostic method worthy of promotion for the diagnosis and treatment of tuberculosis and nontuberculous mycobacteria infection.
引文
[1] CHATTERJEE S, BANTA A. The spectrum of tuberculosis of the spine in pediatric age group:a review[J]. Childs Nerv Syst, 2018,doi:10.1007/s00381-018-3891-x.
    [2] SAO EMANI C, WILLIAMS MJ, WIID IJ, et al. The functional interplay of low molecular wight thiols in Mycobacterium tuberculosis[J]. J Biomed Sci, 2018, 25(1):55.
    [3] ERNST JD. MECHANISMS OF M. Tuberculosis immune evasion as challenges to TB vaccine design[J]. Cell Host Microbe, 2018, 24(1):34-42.
    [4] HARAUSZ EP, GARCIA-PRATS AJ, LAW S, et al. TREATMENT AND OUTCOMES IN CHILDREN with multidrug-resistant tuberculosis:a systematic review and individual patient data meta-analysis[J]. PLoS Med, 2018, 15(7):e1002591.
    [5] SCHNIPPEL K, NDJEKA N, MAARTENS G, et al. Effect of bedaquiline on mortality in South African patients with drug-resistant tuberculosis:a retrospective cohort study[J]. Lancet Respir Med, 2018,6(9):699-706.
    [6] ESMAIL A, SABUR NF, OKPECHI I, et al. Management of drug-resistant tuberculosis in special sub-populations including those with HIV co-infection, prgnancy, diabetes, organ-specific dysfuntion, and in the critically ill[J]. J Thorac Dis, 2018, 10(5):3102-3118.
    [7] XU K, WANG S, WU J, et al. Performance of biochip system in detecting drug resistant and multidrug-resistant tuberculosis using sputum collected from multiple clinical settings in Zhejiang, China[J].Sci Rep, 2018, 8(1):10587.
    [8]许榕青,李丹,林银霞,等.基因芯片技术检测结核分枝杆菌利福平和异烟肼耐药性临床应用评价[J].中国人兽共患病学报, 2017, 33(1):43-48.
    [9]欧维正,骆科文,王燕,等.基因芯片和比例法药物敏感性试验检测结核分枝杆菌对利福平和异烟肼耐药性的比较研究[J].医学检验,2013, 28(5):404-407
    [10] GUO Y, ZHOU Y, WANG C, et al. Rapid, accurate determinationof multidrug resistance in M. tuberculosis isolates and sputum using a biochip system[J]. Int J Tuberc Lung Dis, 2009, 13(7):914-920.
    [11]芮东妹,朱珍,樊燕.基因芯片技术在结核分枝杆菌对利福平敏感性检测中的临床价值[J].海南医学, 2017, 28(22):3714-3716.
    [12]陈国会,冯大山,王秀丽,等.应用基因芯片检测系统诊断结核分枝杆菌感染及耐药基因突变的临床研究[J].国际检验医学杂志,2017, 38(5):638-643.
    [13]常凤霞.基因芯片快速分枝杆菌鉴定技术与涂片抗酸染色技术的临床应用效果比较[J].医疗装备, 2017, 30(2):1-2.
    [14] PHELAN J, COLL F, MCNERNEY R, et al. Mycobacterium tuberculosis whole genome sequencing and protein modelling provides insights into anti-tuberculosis drug resistance[J]. BMC Med, 2016, 14:31.
    [15]吴联朋,吴双辽.基因芯片检测系统在结核分枝杆菌耐药性检测中的应用价值评估[J].中国卫生检验杂志, 2018, 28(1):47-49.
    [16] BARTLETT JG, BLACKLOW NR. Gorbach textbook of infectious dis eases[M]. Philadelphia:Lipincott Williams and Wilkins, 2003:2185-2189.
    [17]王斐娴,李云.苏州市肺结核可疑耐药患者非结核分枝杆菌检出分析[J].江苏预防医学, 2018, 29(3):298-299.
    [18]张贺秋,赵雁林.现代结核病诊断技术[M].北京:人民卫生出版社,2013:215-216.
    [19]苏雯婕,苏政军,孟繁荣,等. 95例耐多药结核菌株rpoB基因突变的分子特征[J].实用医学杂志, 2012, 28(14):2333-2335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700