四足机器人仿生关节的研究现状综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Summarization of the Research Status of Quadruped Robot Bionic Joint
  • 作者:朱雅乔 ; 陈国松 ; 王姣姣 ; 范广宏
  • 英文作者:Zhu Yaqiao;Chen Guosong;Wang Jiaojiao;Fan Guanghong;Aviation,Aerospace and Automobile School,Tianjin Sino-German Vocational Technology College;State Key Laboratory of Advanced Forming Technology and Equipment;College-Enterprise Cooperation Department,Tianjin Sino-German Vocational Technology College;
  • 关键词:四足机器人 ; 仿生关节 ; 气动柔性 ; 液压减震 ; 弹性驱动器
  • 英文关键词:Quadruped robot;;Bionic joint;;Flexible pneumatic;;Hydraulic damping;;Elastic drive
  • 中文刊名:JXCD
  • 英文刊名:Journal of Mechanical Transmission
  • 机构:天津中德应用技术大学航天航空学院;先进成形技术与装备国家重点实验室;天津中德应用技术大学校企合作处;
  • 出版日期:2019-01-15
  • 出版单位:机械传动
  • 年:2019
  • 期:v.43;No.265
  • 基金:国家高技术研究发展计划(863计划)(2015AA033802)
  • 语种:中文;
  • 页:JXCD201901032
  • 页数:6
  • CN:01
  • ISSN:41-1129/TH
  • 分类号:165-170
摘要
兼具高速度、高机动和高适应性已成为四足机器人发展的必然趋势,仿生关节作为重要的基础运动部件,对四足机器人的运动学和动力学研究具有重要的作用。从气动柔性的仿生关节、液压减震的仿生关节、串联弹性驱动器的仿生关节和变刚度柔性的仿生关节4方面出发,对四足机器人关节仿生的研究现状进行了全面综述,并准确分析各种类型的仿生关节缺陷,最后对四足机器人仿生关节的未来发展趋势进行概述。随着研究的深入,四足机器人的仿生关节必然会在生产服务、科学探索、未来战争等多个领域中发挥广泛的应用。
        High speed,high mobility and high adaptability become the inevitable developing trend of quadruped robot,bionic joints as an important basis of moving parts,plays an important role about the kinematics and dynamics research of quadruped robot. Specific from four aspects of flexible pneumatic bionic joints,hydraulic damping bionic joints,series-wound elastic drive bionic joints and flexible variable stiffness bionic joints,the research status of quadruped robot bionic joints is summarized,and the various types of bionic joint defects are accurately analyzed. Finally,the future develop trend of quadruped bionic robot joints is described.With the deepening of the research,the quadruped robot bionic joint will have widely application prospect in production services,human exploration,future war and other special fields inevitably.
引文
[1] Boston Dynamics. BigDog overview[EB/OL].[2011-03-10].http:∥www. bostondynamics. com/img/BigDog_Over-view. pdf.bigdog.
    [2] 863计划先进制造技术领域办公室.国家高技术研究发展计划(863计划)先进制造技术领域“高性能四足仿生机器人”主题项目申请指南[EB/OL].(2010-10-20). http://www. doc88.com/p-5405871622025.html.
    [3] ALEXANDER R M. The maximum forces exerted by animals[J].Journal of Experimental Biology,1985,115(1):231-238.
    [4] ROBERTS T J,MARSH R L,WEYAND P G,et al. Muscular force in running turkeys:the economy of mini-mizing work[J]. Science,1997,275:1113-1115.
    [5]陶国良,谢建蔚,周洪.气动人工肌肉的发展趋势与研究现状[J].机械工程学报,2009,45(10):75-83.
    [6] ASCHENBECK K S,KERN N I,BACHMANN R J,et al. Design of a quadruped robot driven by air muscles[C]∥Proceedings of the First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics,February 20-22,2006,Pisa,Italy.New York:IEEE Press,2006:875-880.
    [7] NARIOKA Kenichi,HOSODA Koh. Motor development of an pneumatic musculoskeletal infant robot[C]∥Proceedings of the International Conference on Robotics and Automation. Anchorage, May9-13,2011,Shanghai,China. New York:IEEE Press,2011:963-968.
    [8]毛勇,王家貵,庄新彦,等.基于气动人工肌肉的双足机器人关节设计[J].电子技术应用,2006,21(3):78-80.
    [9]雷静桃,俞煌颖.四足机器人气动人工肌肉驱动的仿生柔性机体动力学分析[J].上海交通大学学报,2014,48(12):1693-1699.
    [10]于海涛,郭伟,谭宏伟,等.基于气动肌腱驱动的拮抗式仿生关节设计与控制[J].机械工程学报,2012,48(17):2-9.
    [11]彭光正,余麟,刘昊.气动人工肌肉驱动仿人灵巧手的结构设计[J].北京理工大学学报,2006,26(7):593-597.
    [12] WOODEN D,MALCHANO M,BLANKESPOOR K,et al. Autonomous navigation for BigDog[C]∥Proceedings of the International Conference on Robotics and Automation. Anchorage,May 3-7,2010,Anchorage,AK. New York:IEEE Press,2010:4736-4741.
    [13] KIMURA H,FUKUOKA Y,COHEN A H. Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts[J]. International Journal of Robotics Research,2007,26(5):475-490.
    [14] SEMINI C. Hy Q-design and development of a hydraulically actuated quadruped robot[M]. Genoa Italy:Italian Institute of Technology and University of Genoa,2010.
    [15] KIM H K,WON D,KWON O,et al. Foot trajectory generation of hydraulic quadruped robots on uneven terrain[C]. Proceedings of the International Federation of Automation Control,Seoul:IFAC,2008:3021-3026.
    [16]李贻斌,李彬,荣学文,等.液压驱动四足仿生机器人的结构设计和步态规划[J].山东大学学报(工学版),2011,41(5):32-45.
    [17]柴汇,孟健,荣学文,等.高性能液压驱动四足机器人SCalf的设计与实现[J].机器人,2014,36(4):385-391.
    [18]田兴华,高峰,陈先宝,等.四足仿生机器人混联腿构型设计及比较[J].机械工程学报,2013,49(6):81-88.
    [19]李满天,郭一澎,蒋振宇,等.四足机器人Trot步态简化模型控制方法[J].机械与电子,2012,22(10):3-7.
    [20] LI Mantian,JIANG Zhenyu,WANG Pengfei,et al. Control of a quadruped robot with bionic springy legs in trotting gait[J]. Journal of Bionic Engineering,2014,11(2):188-198.
    [21]谢惠祥,尚建忠,罗自荣,等.四足机器人对角小跑中机体翻转分析与姿态控制[J].机器人,2014,36(6):676-682.
    [22] HAM R Van,SUGAR T G,VANDERBORGHT B,et al. Compliant actuator designs[J]. IEEE Robotics and Automation Magazine,2009,16(3):81-94.
    [23] HUTTER M,REMY C D,HOEPFLINGER M et al. High compliant series elastic actuation for the robotic leg ScarlETH[C]. Proceedings of the International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines. Paris:UPMC University,2011:1-8.
    [24] TSAGARAKIS N G,MORFEY S,CERDA G M,et al. Compliant humanoid coman:Optimal joint stiffness tuning for modal frequency control[C]∥Proceedings of the 2013 IEEE International Conference on Robotics and Automation,May 6-10,2013,Karlsruhe,Germany. New York:IEEE Press,2013:673-678.
    [25]马洪文,赵朋,王立权,等.刚度和等效质量对SEA能量放大特性的影响[J].机器人,2012,34(3):275-281.
    [26]王润孝,李军,冯华山,等.四足机器人前小腿系弹性牵拉驱动机构设计[J].机器人,2013,35(4):476-483.
    [27]张雪峰,秦现生,冯华山,等.面向奔跑运动的刚%柔复合四足机器人单腿设计与实验研究[J].机器人,2013,35(5):582-588.
    [28] WOLF S,HIRZINGER G. A new variable stiffness design:matching requirements of the next robot generation[C]∥Proceedings of the2008 IEEE International Conference on Robotics and Automation,May 19-23,2008,Pasadena,CA. New York:IEEE Press,2008:1741-1746.
    [29] WOLF S,EIBERGER O,HIRZINGER G. The DLR FSJ:Energy based design of a variable stiffness joint[C]∥Proceedings of the2011 IEEE International Conference on Robotics and Automation,May 9-13,2011,Shanghai,China. New York:IEEE Press,2011:5082-5089.
    [30] JAFARI A,TSAGARAKIS N G,VANDERBORGHT B,et al. A novel actuator with adjustable stiffness[C]∥Proceedings of the International Conference on Intelligent Robots and Systems,October 18-22,Taipei,Taiwan. New York:IEEE Press,2010:4201-4206.
    [31] TSAGARAKIS N G,SARDELLITTI I,CALDWELL D G. A new variable stiffness actuator:design and modelling[C]∥Proceedings of the 2011 International Conference on Intelligent Robots and Systems,September 25-30,2011,San Francisco,CA. New York:IEEE Press,2011:4401-4408.
    [32]尹鹏,李满天,郭伟,等.面向足式机器人的新型可调刚度柔性关节的设计及性能测试[J].机器人,2014,36(3):322-329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700