风振响应风电机组基础-土体结构蠕变稳定分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Creep stability of foundation-soil structure in wind turbine under wind-induced vibration
  • 作者:王军 ; 曾宪桃 ; 刘杰 ; 梁桥
  • 英文作者:WANG Jun;ZENG Xiantao;LIU Jie;LIANG Qiao;Department of Building Engineering,Hunan Institute of Engineering;School of Resource & Environment and Safety Engineering,Hunan University of Science and Technology;
  • 关键词:风电机组 ; 风荷载 ; 基础-土结构的力学条件 ; 振动方程 ; 蠕变特性
  • 英文关键词:wind turbine;;wind load;;mechanical condition of foundation-soil structure;;vibration equation;;creep properties
  • 中文刊名:ZRZH
  • 英文刊名:Journal of Natural Disasters
  • 机构:湖南工程学院建筑工程学院;湖南科技大学资源环境与安全工程学院;
  • 出版日期:2019-06-15
  • 出版单位:自然灾害学报
  • 年:2019
  • 期:v.28
  • 基金:国家自然科学基金项目(51804110);; 湖南省自然科学基金项目(2019JJ40056);; 湖南省教育厅资助科研项目(18A345,18B391,12C0126);; 湖南省应用特色学科建设项目~~
  • 语种:中文;
  • 页:ZRZH201903016
  • 页数:9
  • CN:03
  • ISSN:23-1324/X
  • 分类号:144-152
摘要
风致灾害对陆上风电机组运行已造成重大威胁,从风电机组地基基础结构的力学条件出发,根据风机系统各组件的强度差异性,结合塔筒-基础-地基界面特性和边界条件,建立了基础-土体结构粘性阻尼二自由度系统受迫振动的振动模型、振动方程、上弯下剪振型特征及频率型特征方程式,获得了风机基础-土体的多个固有频率解析式,还得到了基础顶部风致剪力和风致弯矩的解析式。依据风振响应地基土体的加速蠕动变形特征,运用土体的Mohr-Coulomb塑性屈服条件,构建了能反映土体加速蠕变的非线性西原蠕变模型、非线性粘滞系数和粘弹性及粘塑性速率控制方程,提出了风振响应土体加速蠕变破坏的时间,还进一步得到了风振响应土体蠕变的运动方程和基础底部最大附加应力。结合算例验证:考虑风振作用和地基土体蠕变效应风机结构的垂直位移变化率最为显著,且基础-土体结构还呈现出弯剪、压剪、剪切破坏形态,因此必须对风电机组基础-土体结构界面、持力层浅表层土体、基础顶部主风向区域等范围进行及时加固,这为风电机组地基基础加固设计的理论研究和实践提供有益参考。
        Wind disaster has posed a major threat to the operation of wind power units on land. Starting from the mechanical conditions of the foundation structure of wind power units,according to the strength difference of each component of the fan system,combined with the characteristics of the tower barrel-foundation-foundation interface,The vibration model,vibration equation,characteristics of the upper bending shear type and the frequency characteristic equation of the forced vibration of the foundation-soil structure viscous damping two-degree of freedom system are established,and various natural frequencies of the fan base-soil body are obtained. The analytical formula of wind shear force and wind bending moment at the top of the foundation is obtained. Based on the characteristics of the accelerated peristaltic deformation of ground soil in response to wind vibration,and using the Mohr-Coulomb plastic yield condition of soil,a nonlinear West Plain creep model,nonlinear viscosity coefficient,and viscoelastic and viscoplastic rate control equations that can reflect the accelerated creep of soil are constructed. The time of wind vibration response to accelerated creep failure of soil is presented,and the motion equation of wind vibration response to soil creep and the maximum additional stress at the bottom of the foundation are further obtained. The results show that the effect of soil creep effect on the vertical displacement of the wind vibration response is significantly increased and the structure of the soil mainly shows bending,shear and shear failure. Therefore,it is necessary to reinforce the basic structure interface of the wind turbine unit,the shallow surface soil body of the holding layer,and the main wind direction area at the top of the foundation. This provides a useful reference for the design of the foundation reinforcement of the wind turbine unit.
引文
[1]张博,任贺贺,陈文礼,等.尖山地区复杂地形下的风场模拟[J].自然灾害学报,2017,26(6):22-31.ZHANG Bo,REN Hehe,CHEN Wenli,et al. Wind field simulation of Jianshan area under complex terrain[J]. Journal of Natural Disasters,2017,26(6):22-31.(in Chinese)
    [2]宋欢,丛欧,郝华庚,等.预制装配式风机基础受力特性研究[J].建筑结构,2018,48(13):96-100.SONG Huan,CONG Ou,HAO Huageng,et al. Research on mechanical properties of prefabricated foundation of wind turbine generators[J]. Buliding Structure,2018,48(13):96-100.(in Chinese)
    [3]欧进萍.结构振动控制[M].北京:科学出版社,2003.OU Jinping. Structural Vibration Control[M]. Beijing:Science Press,2003.(in Chinese)
    [4]杨文刚,王璋奇,朱伯文,等.特高压单柱拉线塔塔线体系风振响应时程分析[J].中国电机工程学报,2015,3(12):3182-3191.YANG Wengang,WANG Zhangqi,ZHU Bowen,et al. Time history analysis on wind-induced response of UHVguyed single-mast transmission-line system[J]. Proceedings of the CSEE,2015,3(12):3182-3191.(in Chinese)
    [5]郭勇,孙炳南,叶尹,等.大跨越输电塔线体系风振响应频域分析及风振控制[J].空气动力学学报,2009,27(3):288-295.GUO Yong,SUN Bingnan,YE Yin,et al. Frequency-domain analysis on wind-induced dynamic response and vibration control of long span transmission line system[J]. Acta Aero Dynamica Sinica,2009,27(3):288-295.(in Chinese)
    [6]范存新,张毅,薛松涛,等.桩-土-结构相互作用对高层建筑风振舒适度的影响[J].振动与冲击,2006,25(3):90-94.FAN Cunxin,ZHANG Yi,XUE Songtao,et al. Effect of pile-soil-structure interaction on comfortable level of tall building to wind-induced vibration[J]. Journal of Vibration and Shock,2006,25(3):90-94.(in Chinese)
    [7]李永贵,李秋胜.基本振型对高层建筑等效静力风荷载的影响分析[J].地震工程与工程振动,2016,36(6):38-44.LI Yonggui,LI Qiusheng. Influence of fundamental mode shapes onequivalent static wind loads of tall buildings[J]. Earthquake Engineering and Engineering Dynamics,2016,36(6):38-44.(in Chinese)
    [8]万春风,黄磊,汪江,等.脉动风作用下塔架结构的风振响应分析[J].科技导报,2012,30(1):39-43.WAN Chunfeng,HUANG Lei,WANG Jiang,et al. Wind-induced response of a tower structure under fluctuating wind load[J]. Science and Technology Guide,2012,30(1):39-43.(in Chinese)
    [9]陈镕,薛松涛,王远功,等.土-结构相互作用对结构风振响应的影响[J].岩石力学与工程学报,2003,22(2):309-315.CHEN Rong,XUE Songtao,WANG Yuangong,et al. Effects of soil-sturcture interaction on the responses of structure to wind-induced vibration[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(2):309-315.(in Chinese)
    [10]吕中宾,陈文礼,潘宇,等.输电导线风致舞动的数值模拟研究[J].自然灾害学报,2017,26(4):1-9.LV Zhongbin,CHEN Wenli,PAN Yu,et al. Numerical simulation on galloping of an iced conductor[J]. Journal of Natural Disasters,2017,26(4):1-9.(in Chinese)
    [11]张文福,马昌恒.关于功率谱密度与风速谱的注记[J].计算力学学报,2008,25(4):474-477.ZHANG Wenfu,MA Changheng. Notes on power spectrum density and wind-velocity PSD[J]. Chinese Journal of Computational Mechanics,2008,25(4):474-477.(in Chinese)
    [12] Bangchun Wen,Hui Zhang,Shuying Liu,et al. Theory and Techniques of Vibrating Machinery and Their Application[M]. Beijing:Science Press,2010.
    [13]梁枢果,李辉民,瞿伟廉.高层建筑风荷载计算中的基本振型表达式分析[J].同济大学学报,2002,30(5):578-582.LIANG Shuguo,LI Huimin,QU Weilian. Analysis of fundamental mode shape expressions of tall building for evaluating wind loads[J]. Journal of Tongji University,2002,30(5):578-582.(in Chinese)
    [14]黄文锋,孙志文,张延.基于台风风场经验模型的海面风场数值模拟[J].自然灾害学报,2017,26(1):35-40.HUANG Wenfeng,SUN Zhiwen,ZHANG Yan. Simulation of typhoon wind field over sea surface based on empirical typhoon wind field model[J]. Journal of Natural Disasters,2017,26(1):35-40.(in Chinese)
    [15]谭红霞,杨宇.考虑土流变的土坡稳定性分析方法研究[J].湘潭大学自然科学学报,2005,27(2):77-79.TAN Hongxia,YANG Yu. Study on analysis method of the stability of soil slope with the rheology of soil considered[J]. Natural Science Journal of Xiangtan University,2005,27(2):77-79.(in Chinese)
    [16]黄书岭,冯夏庭,黄小华,等.岩土流变数值中一些问题的探讨[J].岩土力学,2008,29(4):1107-1113.HUANG Shuling,FENG Xiating,HUANG Xiaohua. et al. Research for some problems in rheological numerical calculation of rock and soil[J].Rock and Soil Mechanics,2008,29(4):1107-1113.(in Chinese)
    [17]王军,曹平,曾国柱,等.基于流变效应锚杆柔性支护在基坑中的应用[J].解放军理工大学学报,2009,10(5):457-471.WANG Jun,CAO Ping,ZENG Guozhu,et al. Application of flexible reinforcement with anchor in foundation pit based on rheological[J]. Journal of PLA University of Science and Technology,2009,10(5):457-471.(in Chinese)
    [18]孙钧.岩土材料流变及工程应用[M].北京:中国建筑工业出版社,1999.SUN Jun. Rheology of Geomaterial and Its Engineering Application[M]. Beijing:China Architecture&Building Press,1999.(in Chinese)
    [19] Itasca Consulting Group. User’s guide. Minnesota:Itasca Consulting Group,Inc,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700