多相芬顿-活性炭工艺强化饮用水消毒效果
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Enhancement of potable water disinfection efficiency by heterogeneous Fenton-activated carbon process
  • 作者:鲁智礼 ; 张堯 ; 黄俊亮 ; 石宝友 ; 胡春 ; 迟晓静 ; 王海波
  • 英文作者:LU Zhili;ZHANG Yao;HUANG Junliang;SHI Baoyou;HU Chun;CHI Xiaojing;WANG Haibo;Institute of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power;Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences;College of Environment, Hohai University;Institute of Environmental Research at Greater Bay, Guangzhou University;Beijing Huaxia Boxin Environmental Consulting Co.Ltd.;
  • 关键词:多相芬顿 ; 活性炭 ; 胞外多聚物 ; 微生物 ; 消毒
  • 英文关键词:heterogeneous Fenton;;activated carbon;;extracellular polymeric substances;;microorganisms;;disinfection
  • 中文刊名:HJJZ
  • 英文刊名:Chinese Journal of Environmental Engineering
  • 机构:华北水利水电大学环境与市政工程学院;中国科学院生态环境研究中心中国科学院饮用水科学与技术重点实验室;河海大学环境学院;广州大学大湾区环境研究院;北京华夏博信环境咨询有限公司;
  • 出版日期:2019-04-16 17:28
  • 出版单位:环境工程学报
  • 年:2019
  • 期:v.13
  • 基金:国家重点研发计划项目(2016YFA0203204);; 国家自然科学基金资助项目(51878654,51838005);; 中国科学院前沿科学重点研究项目(QYZDY-SSW-DQC004);; 国家水体污染与控制科技重大专项(2017ZX07108,2017ZX07501-002)
  • 语种:中文;
  • 页:HJJZ201904006
  • 页数:8
  • CN:04
  • ISSN:11-5591/X
  • 分类号:42-49
摘要
为了考察多相芬顿-活性炭工艺对饮用水中微生物消毒效果的影响,采用中试对活性炭工艺与多相芬顿-活性炭工艺进行了对比研究。该中试对水中溶解性有机物(DOC)、总细菌16S rRNA、三磷酸腺苷(ATP)及胞外多聚物(EPS)含量与性质进行了分析。结果表明,多相芬顿-活性炭工艺能够将出水DOC浓度控制在(0.90±0.11) mg·L~(-1),并使得EPS减少83.2%,降低EPS中蛋白质/多糖(PN/PS)比值,其凝聚性明显下降,在相同氯浓度投加情况下水中微生物16S rRNA基因拷贝数去除量提高了3.5个对数量级,ATP浓度降低为0.016 nmol·L~(-1)。因此,多相芬顿-活性炭工艺明显提高了对有机物的去除能力,显著降低EPS中蛋白质的含量,使得微生物凝聚性变差,微生物更加容易被消毒剂灭活,该工艺强化了饮用水消毒效果。
        In order to investigate the effect of heterogeneous Fenton-activated carbon process on the disinfection of microbes in drinking water, the treatment processes of activated carbon filtration and heterogeneous Fentonactivated carbon filtration were studied in a pilot scale. The concentrations and properties of dissolved organic carbon(DOC), 16 S rRNA, ATP and extracellular polymeric substances(EPS) were analyzed. The results showed that the DOC concentration in effluents of heterogeneous Fenton-activated carbon treatment process was(0.90 ±0.11) mg·L-1. This heterogeneous process could lead to EPS reduction by 83.2%, the decrease of EPS protein/polysaccharide(PN/PS) ratio, and an obvious decrease of microbial EPS coagulation ability. Under the same concentration of chlorine addition, the removal of 16 S rRNA gene copies increased by 3.5 logarithmic order of magnitude, and the ATP concentration decreased to 0.016 nmol·L-1. Therefore, when the heterogeneous Fentonactivated carbon treatment process was used, the organic matter removal was significantly improved, and the content of proteins in EPS was remarkably reduced, and the coagulation ability of microbes was weakened, then they were easily inactivated by disinfectant. This treatment process enhanced the disinfection efficiency.
引文
[1]言野,李娜,刘楠楠,等.利用改进的SOS/umu方法检测水处理过程中污染物的遗传毒性效应[J].生态毒理学报, 2013,8(6):909-916.
    [2] ZHANG J, LI W, WANG F, et al. Exploring the biological stability situation of a full scale water distribution system in south China by three biological stability evaluation methods[J]. Chemosphere, 2016, 161:43-52.
    [3]王永京,冯思捷,季雨晴,等.臭氧-生物活性炭工艺对臭味及溴酸盐控制的中试研究[J].给水排水, 2016, 52(8):27-32.
    [4] JUNG Y, HONG E, KWON M, et al. A kinetic study of ozone decay and bromine formation in saltwater ozonation:Effect of O3dose, salinity, pH, and temperature[J]. Chemical Engineering Journal, 2017, 312:30-38.
    [5] LIN T, WU S, CHEN W. Formation potentials of bromate and brominated disinfection by-products in bromide-containing wa?ter by ozonation[J]. Environmental Science and Pollution Research, 2014, 21(24):13987-14003.
    [6] ZHAO L, CHEN Y, LIU Y, et al. Enhanced degradation of chloramphenicol at alkaline conditions by S(-II)assisted heteroge?neous Fenton-like reactions using pyrite[J]. Chemosphere, 2017, 188:557-566.
    [7] ZHANG Y, CHEN Z, ZHOU L, et al. Heterogeneous Fenton degradation of bisphenol A using Fe3O4@β-CD/rGO composite:Synergistic effect, principle and way of degradation[J]. Environmental Pollution, 2019, 244:93-101.
    [8] HOU X, HUANG X, JIA F, et al. Hydroxylamine promoted goethite surface fenton degradation of organic pollutants[J]. Envi?ronmental Science&Technology, 2017, 51(9):5118-5126.
    [9] XIE Z, WANG C, YIN L. Nickel-assisted iron oxide catalysts for the enhanced degradation of refractory DDT in heteroge?neous Fenton-like system[J]. Journal of Catalysis, 2017, 353:11-18.
    [10]吕来,胡春.多相芬顿催化水处理技术与原理[J].化学进展, 2017, 29(9):981-999.
    [11] PAPCIAK D, TCHóRZEWSKA-CIESLAK B, PIETRUCHA-URBANIK K, et al. Analysis of the biological stability of tap wa?ter on the basis of risk analysis and parameters limiting the secondary growth of microorganisms in water distribution systems[J]. Desalination and Water Treatment, 2018, 117:1-8.
    [12] HUANG G, XIA D, AN T, et al. Dual roles of capsular extracellular polymeric substances in photocatalytic inactivation of Escherichia coli:Comparison of E. coli BW25113 and isogenic mutants[J]. Applied and Environmental Microbiology, 2015,81(15):5174-5183.
    [13] WANG H, SHEN Y, HU C, et al. Sulfadiazine/ciprofloxacin promote opportunistic pathogens occurrence in bulk water of drinking water distribution systems[J]. Environmental Pollution, 2018, 234:71-78.
    [14] BUSI S, KARUGANTI S, RAJKUMARI J, et al. Sludge settling and algal flocculating activity of extracellular polymeric sub?stance(EPS)derived from bacillus cereus SK[J]. Water and Environment Journal, 2017, 31(1):97-104.
    [15] YUAN S, SUN M, SHENG G, et al. Identification of key constituents and structure of the extracellular polymeric substances excreted by Bacillusmegaterium TF10 for their flocculation capacity[J]. Environmental Science&Technology, 2011, 45(3):1152-1157.
    [16]赵社行,王海波,胡春,等. UV/H2O2及活性炭过滤对消毒副产物和条件致病菌的控制[J].环境工程学报, 2018, 12(9):2457-2465.
    [17] ZHANG P, FANG F, CHEN Y, et al. Composition of EPS fractions from suspended sludge and biofilm and their roles in mi?crobial cell aggregation[J]. Chemosphere, 2014, 117:59-65.
    [18] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quanti?fy spectra for dissolved organic matter[J]. Environmental Science&Technology, 2003, 37(24):5701-5710.
    [19] ZHU L, QI H, LV M, et al. Component analysis of extracellular polymeric substances(EPS)during aerobic sludge granula?tion using FTIR and 3D-EEM technologies[J]. Bioresource Technology, 2012, 124:455-459.
    [20] LI C, WANG Y, DU H, et al. Influence of bacterial extracellular polymeric substances on the sorption of Zn onγ-alumina:A combination of FTIR and EXAFS studies[J]. Environmental Pollution, 2017, 220:997-1004.
    [21] WANG B, LIU X, CHEN J, et al. Composition and functional group characterization of extracellular polymeric substances(EPS)in activated sludge:the impacts of polymerization degree of proteinaceous substrates[J]. Water Research, 2018, 129:133-142.
    [22] ADELEYE A S, KELLER A A. Interactions between algal extracellular polymeric substances and commercial TiO2nanopar?ticles in aqueous media[J]. Environmental Science&Technology, 2016, 50(22):12258-12265.
    [23] XING X, WANG H, HU C, et al. Effects of phosphate-enhanced ozone/biofiltration on formation of disinfection byproducts and occurrence of opportunistic pathogens in drinking water distribution systems[J]. Water Research, 2018, 139:168-176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700