高响应度倍增型碳纳米管-有机红光探测器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High Responsiveness Multiply Carbon Nanotubes-organic Red Light Detector
  • 作者:安涛 ; 刘丹
  • 英文作者:AN Tao;LIU Dan;College of Automation and Information Engineering,Xi′an University of Technology;
  • 关键词:有机光电探测器 ; 活性层 ; 光致发光光谱 ; 碳纳米管 ; 光电特性 ; 本体异质结
  • 英文关键词:Organic photodetector;;Active layer;;Photoluminescence spectroscopy;;Carbon nanotubes;;Photoelectric properties;;Bulk heterojunction
  • 中文刊名:GZXB
  • 英文刊名:Acta Photonica Sinica
  • 机构:西安理工大学自动化与信息工程学院;
  • 出版日期:2018-12-25 14:56
  • 出版单位:光子学报
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金(No.61106043);; 陕西省自然基金面上项目(No.2015JM6267)~~
  • 语种:中文;
  • 页:GZXB201901012
  • 页数:8
  • CN:01
  • ISSN:61-1235/O4
  • 分类号:89-96
摘要
采用溶液旋涂方法将单壁碳纳米管与有机红光材料结合并制作出红光探测器,研究了单壁碳纳米管对PBDTTT-F∶PCBM本体异质结活性层薄膜的影响机理及其红光探测器的光电特性.利用原子力显微镜,荧光光谱和紫外-可见吸收光谱等方法对器件进行性能表征及优化.当单壁碳纳米管为最优掺入比1.5wt%时,在-1V偏置电压时,红光光照下该探测器响应度为535mA/W,比探测率达到3.8×1012 Jones,外量子效率达到104%.结果表明,将单壁碳纳米管与有机红光材料结合,有利于提高有机共轭聚合物的聚集以及结晶度,增强光吸收,可为活性层提供高迁移率的电荷传导通道,优化薄膜互穿网络形貌.同时,利用碳纳米管的多激子产生效应,使得有机光电探测器的光电性能大大改善,外量子效率超过100%,为无机-有机光电探测器的进一步开发提供参考.
        A single-walled carbon nanotube combined with an organic red light material by a solution spin coating method to produce a red light detector.The influence mechanism of single-walled carbon nanotubes on PBDTTT-F∶PCBM bulk heterojunction active layer film and the photoelectric properties of red photodetector were studied.The performance of the device was characterized and optimized by atomic force microscopy,fluorescence spectroscopy and ultraviolet-visible absorption spectroscopy.When singlewalled carbon nanotube is the optimal doping ratio 1.5wt%,the responsivity of the detector is 535mA/W under the red light illumination,the detection reaches 3.8×1012 Jones,and the external quantum efficiency reaches 104%.The results show that the combination of single-walled carbon nanotubes and organic red-light materials can improve the aggregation and crystallinity of organic conjugated polymers and enhance the absorption of light,provide high-mobility charge conduction channels for the active layer and optimize the interpenetrating network morphology.At the same time,the multi-exciton generation effect of carbon nanotubes is utilized,the photoelectric performance of organic photoelectric detectors has been greatly improved,the external quantum efficiency exceeds 100%,Providing reference for further development of inorganic-organic photodetectors.
引文
[1] SARGENT E H.Infrared auantum dots[J].Advanced Materials,2005,17(5):515-522.
    [2] HALLS J J M,PICHLER K,FRIEND R H,et al.Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60heterojunction photovoltaic cell[J].Applied Physics Letters,1996,68(22):3120-3122.
    [3] JAYAWARDENA K D,ROZANSKI L J,MILLS C A,et al.Inorganics-in-organics′:recent developments and outlook for 4Gpolymer solar cells.[J].Nanoscale,2013,5(18):8411.
    [4] NISMY N A,JAYAWARDENA K D,ADIKAARI A A,et al.Photoluminescence quenching in carbon nanotubepolymer/fullerene films:carbon nanotubes as exciton dissociation centres in organic photovoltaics[J].Advanced Materials,2011,23(33):3796-3800.
    [5] PARK Y D,LIM J A,JANG Y,et al.Enhancement of the field-effect mobility of poly(3-hexylthiophene)/functionalized carbon nanotube hybrid transistors[J].Organic Electronics,2008,9(3):317-322.
    [6] NICOLA F D,SALVATO M,CIRILLO C,et al.100%internal quantum efficiency in polychiral single-walled carbon nanotube bulk heterojunction/silicon solar cells[J].Carbon,2017,114:402-410.
    [7] DISSANAYAKE N M,ZHONG Z.Unexpected hole transfer leads to high efficiency single-walled carbon nanotube hybrid photovoltaic.[J].Nano Letters,2011,11(1):286.
    [8] GRECHKO M, YE Y, MEHLENBACHER R D,et al.Diffusion-assisted photoexcitation transfer in coupled semiconducting carbon nanotube thin films.[J].Acs Nano,2014,8(6):5383-94.
    [9] JI S M,TAKACS C J,SUN Y,et al.Spontaneous formation of bulk heterojunction nanostructures:multiple routes to equivalent morphologies[J].Nano Letters,2011,11(3):1036-1039.
    [10] EBBESEN T W,Physicalproperties of carbon nanotubes[C].APS March Meeting.APS March Meeting Abstracts,1997.
    [11] PAUL S,RAJBONGSHI B,BORA B,et al.Organic photovoltaic cells using MWCNTs[J].New Carbon Materials,2017,32(1):27-34.
    [12] XU X,XU P,HAO Y,et al.Exploring the effects of optically generated dipoles on organic photodetector infrared detection[J].Organic Electronics,2017,45:222-226.
    [13] LUER L,HOSEINKHANI S,POLLI D,et al.Size and mobility of excitons in(6,5)carbon|[nbsp]|nanotubes[J].Nature Physics,2008,5(1):54-58.
    [14] HEEGER A J,SARICIFTCI N S,NAMDAS E B.Semiconducting and metallic polymers[M].Oxford University Press,2011.
    [15] GRONING O,KUTTEL O M,EMMENEGGER C,et al.Field emission properties of carbon nanotubes[J].Journal of Vacuum Science&Technology B,2000,18(2):665-678.
    [16] NICOLA F D,CASTRUCCIP,SCARSELLI M,et al.Multi-fractal hierarchy of single-walled carbon nanotube hydrophobic coatings[J].Scientific Reports,2015,5:8583.
    [17] AN Tao,TU Chuan-bao,YANG Sheng,et al.Photovoltaic characteristics of PBDT-TT-F∶PCBM based bulk heterojunction red detector[J].Chinese Journal of Luminescence,2017,38(12):1643-1649.安涛,涂传宝,杨圣,等.基于PBDT-TT-F∶PCBM体异质结红光探测器的光电特性[J].发光学报,2017,38(12):1643-1649.
    [18] GUO L Q,LIU H C,LIU J H,et al.First-principles calculation of electronic structure and phonon spectrum of singlewalled carbon nanotubes[J].Journal of Synthetic Crystals,2015,44(12):3777-3782.
    [19] MCCARTHY B,COLEMAN J N,CZERW R,et al.A microscopic and spectroscopic study of interactions between carbon nanotubes and a conjugated polymer[J].Journal of Physical Chemistry B,2002,106(9):2210-2216.
    [20] CARTHY B M,DALTON A B,COLEMAN J N,et al.Spectroscopic investigation of conjugated polymer/singlewalled carbon nanotube interactions[J].Chemical Physics Letters,2001,350(1-2):27-32.
    [21] ARRANZ-ANDRES J,BLAU W J.Enhanced device performance using different carbon nanotube types in polymer photovoltaic devices[J].Carbon,2008,46(15):2067-2075.
    [22] AMOLD M S,ZIMMERMAN J D,RENSHAW C K,et al.Broad spectral response using carbon nanotube/organic7-1004010semiconductor/C60photodetectors.[J].Nano Letters,2009,9(9):3354.
    [23] GUILBERT A A,REYNOLDS L X,BRUNO A,et al.Effect of multiple adduct fullerenes on microstructure and phase behavior of P3HT:fullerene blend films for organic solar cells.[J].Acs Nano,2012,6(5):3868-3875.
    [24] JANSSEN G,AGUIREE A,GOOVAERTS E,et al.Optimization of morphology of P3HT/PCBM films for organic solar cells:effects of thermal treatments and spin coating solvents[J].European Physical Journal Applied Physics,2007,37(3):40-43.
    [25] ARREDONDO B,DIOS C D,VERGAZ R,et al.Performance of ITO-free inverted organic bulk heterojunction photodetectors:Comparison with standard device architecture[J].Organic Electronics,2013,14(10):2484-2490.
    [26] NISMY N A,JAYAWARDENA K D G I,ADIKAARI A A D T,et al.Nano-engineering of hybrid organic heterojunctions with carbon nanotubes to improve photovoltaic performance[J].Organic Electronics,2015,22:35-39.
    [27] NIE R,DENG X,FENG L,et al.Highly sensitive and broadband organic photodetectors with fast speed gain and large linear dynamic range at low forward bias.[J].Small,2017,13(24):1603260.
    [28] WANG S,KHAFIZOV M,TU X,et al.Multiple exciton generation in single-walled carbon nanotubes[J].Nano Letters,2010,10(7):2381.
    [29] BEARD M C,MIDGETT A G,HANNA M C,et al.Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors:implications for enhancement of solar energy conversion[J].Nano Letters,2010,10(8):3019.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700