钛合金超声振动车削数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Finite element simulation of ultrasonic vibration turning titanium alloy
  • 作者:庞宇 ; 马原 ; 许超 ; 冯平法
  • 英文作者:PANG Yu;MA Yuan;XU Chao;FENG Pingfa;Graduate School at Shenzhen, Tsinghua University;
  • 关键词:钛合金 ; 超声振动加工 ; 数值模拟 ; 切削力 ; 切削温度
  • 英文关键词:titanium alloy;;ultrasonic vibration machining;;ABAQUS simulation;;cutting force;;cutting temperature
  • 中文刊名:JGSM
  • 英文刊名:Diamond & Abrasives Engineering
  • 机构:清华大学深圳研究生院;
  • 出版日期:2019-04-20
  • 出版单位:金刚石与磨料磨具工程
  • 年:2019
  • 期:v.39;No.230
  • 基金:国家自然科学基金(51705281);; 深圳市基础研究计划(学科布局)(JCYJ20160428181916222)
  • 语种:中文;
  • 页:JGSM201902016
  • 页数:6
  • CN:02
  • ISSN:41-1243/TG
  • 分类号:87-92
摘要
钛合金作为一种轻型优质的结构材料,被广泛应用在航天航空等领域。同时,钛合金也是一种难加工材料,传统切削工艺难以实现钛合金高质高效加工。超声振动辅助加工是将超声信号转换为机械振动,使工件与刀具周期性分离,从而实现加工的方法。以TC4钛合金为研究对象,建立了Abaqus二维车削有限元模型,开展了普通车削与超声振动车削钛合金的数值模拟对比研究。仿真结果表明:超声振动车削钛合金可以有效减小加工过程中的平均切削力以及刀尖切削温度,且在设定的参数范围内,振幅越大,改善效果越明显。
        As a lightweight and high-quality structural material, titanium alloy is widely used in aerospace and other fields. Meanwhile, titanium alloy is also a difficult-to-process material, so it is difficult to achieve high quality and highly efficient processing of titanium alloy by conventional machining(CM). Ultrasonic vibration machining(UVM) converts ultrasonic signals into mechanical vibrations to achieve periodic separation of workpieces and tools for better machining effects. Therefore, titanium alloy(TC4) is taken as the research object to establish Abaqus two-dimensional turning finite element model and carry out simulation comparison of CM and UVM for TC4. The simulation results show that UAM can effectively reduce the average the cutting force and the cutting temperature at tool tips compared with CM. Moreover, the cutting effects are further improved with increasement of vibration amplitude under set conditions.
引文
[1] ELLYSON B,BROCHU M,BROCHU M.Characterization of bending vibration fatigue of SLM fabricated Ti-6Al-4V [J].International Journal of Fatigue,2017,99:25-34.
    [2] MOSHAN A U H,LIU Z,PADHY G K.A review on the progress towards improvement in surface integrity of Inconel 718 under high pressure and flood cooling conditions [J].International Journal of Advanced Manufacturing Technology,2017,91:107-125.
    [3] DOMENICO U.Finite element simulation of conventional and high speed machining of Ti-6Al-4V alloy [J].Journal of Materials Processing Technology,2008,196:79-87.
    [4] SHOKRANI A,DHOKIA V,NEWMAN S T.Investigation of the effects of cryogenic machining on surface integrity in CNC end milling of Ti6Al4V titanium alloy [J].Journal of Manufacturing Processes,2016,21:172-179.
    [5] 张卫华,刘争,张亮.高效加工TC4钛合金的铣削过程数值模拟 [J].工具技术,2019,53(2):104–107.ZHANG Weihua,LIU Zheng,ZHANG Liang.Numerical simulation of high efficiency milling process of TC4 titanium alloy [J].Tool Technology,2019,53(2):104-107.
    [6] ZHANG C L,ZHANG J F,FENG P F.Mathematical model for cutting force in rotary ultrasonic face milling of brittle materials [J].International Journal of Advanced Manufacturing Technology,2013,69:161-170.
    [7] MAUROTTO A,MUHAMMAD R,ROY A,et al.Enhanced ultrasonically assisted turning of a β-titanium alloy [J].Ultrasonics,2013,53:1242-1250.
    [8] PATIL S,JOSHI S,TEWARI A,et al.Modelling and simulation of effect of ultrasonic vibrations on machining of Ti6Al4V [J].Ultrasonics,2014,54(2):694-705.
    [9] NIU Y,JIAO F,ZHAO B,et al.Multiobjective optimization of processing parameters in longitudinal-torsion ultrasonic assisted milling of Ti-6Al-4V [J].International Journal of Advanced Manufacturing Technology,2017,93:4345-4356.
    [10] JOHNSON G R,COOK W H.A constitutive model and data for metals subjected to large strains,high strain rates and high temperatures [C]// International Ballistics Society.Proceedings of the 7th International Symposium on Ballistics.Hague:International Ballistics Society:1983.
    [11] XI Y,BERMINGHAM M,WANG G,et al.FEA modelling of cutting force and chip formation in thermally assisted machining of Ti6Al4V alloy [J].Computational Materials Science,2014,84:188-197.
    [12] KAY G.Failure modeling of Ti6Al4V and aluminum 2034-T3 with the Johnson-Cook material model [Z].US Lawrence Livermore National Laboratory,2003.
    [13] 易俊杰.钛合金高速铣削力试验与有限元数值分析 [D].南京:南京航空航天大学,2009.YI Junjie.Titanium alloy high-speed milling experiments and finite element analysis [D].Nanjing:Nanjing University of Aeronautics and Astronautics,2009.
    [14] PALMAI Z.Cutting temperatures in intermittent cutting [J].International Journal of Machine Tools and Manufacture,1987,27(2):261-274.
    [15] JIAO L,WANG X B,QIAN Y,et al.Modelling and analysis for the temperature field of the machined surface in the face milling of aluminium alloy [J].International Journal of Advanced Manufacturing Technology,2015,81:1797-1808.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700