基于水质水量的导水裂缝带高度分析计算
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis and calculation of height of water conducting fractured zone based on water quality and inflow
  • 作者:许进鹏 ; 鹿存金 ; 张学如 ; 项楷 ; 王青振
  • 英文作者:XU Jinpeng;LU Cunjin;ZHANG Xueru;XIANG Kai;WANG Qingzhen;School of Resources and Earth Sciences,China University of Mining & Technology;Zhengtong Limited Company of Coal Mine;
  • 关键词:强含水层 ; 导水裂缝带高度 ; 水质 ; 水量
  • 英文关键词:aquifer with good water yield property;;height of water conducting fractured zone;;water quality;;water inflow
  • 中文刊名:KSYL
  • 英文刊名:Journal of Mining & Safety Engineering
  • 机构:中国矿业大学资源与地球科学学院;陕西正通煤业有限公司;
  • 出版日期:2018-11-15
  • 出版单位:采矿与安全工程学报
  • 年:2018
  • 期:v.35;No.141
  • 基金:国家重点研发计划项目(2017YFC0804101);; 国家自然科学基金项目(51374203);; 江苏省“青蓝”工程项目
  • 语种:中文;
  • 页:KSYL201806023
  • 页数:5
  • CN:06
  • ISSN:32-1760/TD
  • 分类号:162-166
摘要
高家堡煤矿4煤顶板分布多个含水层,且其中洛河组含水层富水性强,造成井下注水试验法等方法难以进行导高观测。以高家堡煤矿101工作面为例,利用水质分割法得到工作面出水的水源组成,初步得到101工作面的导水裂缝带高度大于160 m;利用工作面洛河组水量计算中非完整井公式中影响深度L特定含义,得到了导水裂缝带高度与出水量的关系,再根据实际出水量计算出实际导水裂缝带最大高度为178.54 m,裂采比为21.6。通过与彬长矿区其他矿井的实测资料进行对比等方法分析认为该计算方法是可靠的。
        There are multiple aquifer seams in ground strata over No.4 coal seam in Gaojiapu coalmine. Among them, the Luohe formation aquifer seam has good water yield property, which cause difficulties to observe the height of water conducting fractured zone by some common methods such as water injection testing. Taking 101 working face in Gaojiapu coalmine as an example, this paper applies water quality classification method to determing the water composition flowing from aquifers into mining zone and estimates the height of water conducting fractured zone is over 160 m. Moreover, using the special meaning of influence depth "L" in the non-complete well formula in Luohe formation water inflow calculations, the relationship between the height of water conducting fractured zone and the water inflow. Based on the real water flow quantity, the real height of water conducting fractured zone is up to 178.54 m, and ratio of water conducting fractured zone height to mining height is 21.6. By comparing real data to other coal mines in Binchang coal field, it proves these calculation methods are reliable.
引文
[1]国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M].北京:煤炭工业出版社,2017:673-684.
    [2]武强,赵苏启,董书宁,等.煤矿防治水手册[M].北京:煤炭工业出版社,2013:673-684.
    [3]康永华,王济忠,孔凡铭,等.覆岩破坏的钻孔观测方法[J].煤炭科学技术,2002,30(12):26-29.KANG Yonghua,WAN Jizhong,KONG Fanming,et al.Bore hole survey method for overburden failure[[J].Coal Science and Technology,2002,30(12):26-29.
    [4]刘明,张祥维,刘德民.导水裂隙发育规律动态监测研究[J].华北科技学院学报,2016,13(2):17-19.LIU Ming,ZHANG Xiangwei,LIU Demin.Research on the dynamic monitoring about the development rule of water conducted zone[[J].Journal of North China Institute of Science and Technology,2016,13(2):17-19.
    [5]SU Benyu,YUE Jianhua.Research of the electrical anisotropic characteristics of water-conducting fractured zones in coal seams[J].Applied Geophysics,2017,14(2):216-224.
    [6]杨永杰,陈绍杰,张兴民,等.煤矿采场覆岩破坏的微地震监测预报研究[J].岩土力学,2007,28(7):1407-1410.YANG Yongjie,CHEN Shaojie,ZHANG Xingmin,et al.Forecasting study on fracturing of overburden strata of coal face by microseism monitoring technology[J].Rock and Soil Mechanics,2007,28(7):1407-1410.
    [7]顾春生,袁骏.基于光纤光栅传感技术的覆岩破坏模型试验[J].煤炭技术,2016,35(3):84-86.GU Chunsheng,YUAN Jun.Model test of overlying rock failure based on fiber bragg grating sensing technology[J].Coal Technology,2016,35(3):84-86.
    [8]PALCHIK V.Localization of mining-induced horizontal fractures along rock layer interfaces in overburden:field measurements and prediction[J].Environ Geol,2005,48:68-80.
    [9]LU Yinlong,WANG Lianguo.Numerical simulation of mining-induced fracture evolution and water flow in coal seam floor above a confined aquifer[J].Computers and Geotechnics,2015,67:151-171.
    [10]马雄德,王苏健,蒋泽泉.神南矿区采煤导水裂隙带高度预测[J].西安科技大学学报,2016,36(5):664-668.MA Xiongde,WANG Sujian,JIANG Zequan.Prediction on the height of water-flowing fractured zone in southern Shenmu mine[J].Journal of Xi’an University of Science and Technology,2016,36(5):664-668.
    [11]许进鹏,边凯,程久龙,等.基于角位移临界值的顶板裂隙带高度研究[J].中国矿业大学学报,2011,40(4):537-539.XU Jinpeng,BIAN Kai,CHENG Jiulong,et al.Study on height of water flowing fractured zone based on criterion of angular displacement[J].Journal of China University of Mining&Technology,2011,40(4):537-539.
    [12]郭兵兵,孙文标,刘长武.煤层开采导水裂隙带发育高度研究综述[J].科学技术与工程,2015,15(17):100-104.GUO Bingbing,SUN Wenbiao,LIU Changwu.Research overview on the height of water flowing fractured zone after coal mining[J].Science Technology and Engineering,2015,15(17):100-104.
    [13]魏久传,吴复柱,谢道雷,等.半胶结中低强度围岩导水裂缝带发育特征[J].煤炭学报,2016,41(4):974-977.WEI Jiuchuan,WU Fuzhu,XIE Daolei,et al.Development characteristic of water flowing fractured zone under semi-cemented medium-low strength country rock[J].Journal of China Coal Society,2016,41(4):974-977.
    [14]陈伟.陕北黄土沟壑径流下采动水害机理与防控技术研究[D].徐州:中国矿业大学,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700