聚己内酯半月板支架应力-应变特性的有限元分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Finite element analysis of stress-strain characteristics of polycaprolactone meniscus scaffold
  • 作者:柳辛墨 ; 章亚东 ; 聂振国 ; 贾海港 ; 顾东强 ; 丁云鹏 ; 陈磊
  • 英文作者:LIU Xinmo;ZHANG Yadong;NIE Zhenguo;JIA Haigang;GU Dongqiang;DING Yunpeng;CHEN Lei;Graduate School,Jinzhou Medical University;Department of Orthopaedics,First Affiliated Hospital,PLA General Hospital;
  • 关键词:半月板替代物 ; 有限元分析 ; 聚己内酯支架 ; 生物力学
  • 英文关键词:meniscus substitutes;;finite element analysis;;polycaprolactone scaffold;;biomechanics
  • 中文刊名:BQEB
  • 英文刊名:Journal of Jilin University(Medicine Edition)
  • 机构:锦州医科大学研究生学院;解放军总医院第一附属医院骨科;
  • 出版日期:2019-03-28
  • 出版单位:吉林大学学报(医学版)
  • 年:2019
  • 期:v.45;No.276
  • 基金:北京市科学技术委员会研究项目资助课题(Z131107002213014)
  • 语种:中文;
  • 页:BQEB201902030
  • 页数:7
  • CN:02
  • ISSN:22-1342/R
  • 分类号:180-185+265
摘要
目的:分析聚己内酯(PCL)半月板支架在膝关节中的应力-应变特性,评估其作为植入材料的可行性。方法:通过磁共振成像(MRI)扫描志愿者膝关节获取平面图像数据,建立包括股骨、胫骨、腓骨、股骨髁及胫骨平台关节软骨、内和外侧半月板及韧带在内的完整膝关节三维有限元模型,通过计算胫骨平台的接触面积与既往文献对比验证模型的有效性;分别建立内侧半月板切除术后的膝关节三维有限元模型及PCL半月板支架替代后的膝关节模型;对比分析在1 400N股骨轴向垂直压力下3种膝关节模型的半月板位移和接触压力变化以及股骨髁关节软骨和胫骨平台关节软骨的压缩应力变化。结果:在1 400N股骨轴向压缩载荷下健康膝关节模型内、外侧半月板位移分别为0.83和1.76mm,PCL模型内、外侧半月板位移分别为1.15和2.20mm。在同等载荷下,健康膝关节在胫骨平台关节软骨内、外侧最大压缩应力分别为2.5和1.7 MPa,在内、外侧股骨髁关节软骨最大压缩应力分别为2.7和2.1 MPa。在内侧半月板完整切除模型,内、外侧胫骨平台关节软骨最大压缩应力较健康模型分别增加260.0%和311.7%;内、外侧股骨髁关节软骨最大压缩应力较健康模型分别增长214.8%和271.4%。而在将内侧半月板替换为PCL支架的模型中,内、外胫骨平台关节软骨最大压缩应力较健康模型分别增加8.0%和5.9%;内、外侧股骨髁关节软骨最大压缩应力较健康模型分别增加11.1%和4.8%。结论:PCL支架在膝关节三维有限元模型中具有较好的生物力学特性,能够降低半月板切除后股骨髁及胫骨平台关节软骨的应力,达到保护关节软骨的目的。
        Objective:To analyze the stress-strain characteristics of the polycaprolactone(PCL)meniscus scaffold in the knee joint,and to evaluate its feasibility as an implant material.Methods:The magnetic resonance imaging(MRI)scan of volunteer knee joints was used to obtain the planar image data.A three-dimensional finite element model including the femur,tibia,fibula,femoral condyle and tibial plateau articular cartilage,medial and lateral menisci,and ligaments was established.The validity of the model was verified by calculating the contact area of the tibial plateau and comparing with the previous literatures.On this basis,the three-dimensional finite element model of the knee joint after medial meniscectomy was established by deleting the medial meniscus unit and node of the normal knee joint.The knee joint model was established after replacement of the PCL meniscus.The changes of meniscal displacement and contact pressure in three types of knee joint models under 1 400 Nfemoral axial vertical pressure and the changes of compressive stresses on the femoral articular cartilage and tibial plateau articular cartilage were compared.Results:The displacements of the medial and lateral menisci of the healthy knee joint under the axial compression load of 1 400 Nfemur were 0.83 and 1.76 mm,respectively.The displacements of the medial and lateral meniscus of the PCL model were 1.15 and 2.20 mm,respectively.Under the same load,the maximum compressive stresses of the healthy knee joint on the medial and lateral cartilage of the tibial plateau were2.5 and 1.7 MPa,respectively;the maximum compressive stresses on the medial and lateral femoral articular cartilage were 2.7 and 2.1 MPa,respectively.In the medial meniscus complete resection model,the maximum compressive stresses on the medial and lateral cartilage of the tibial plateau articular cartilage were 9.0 and7.0 MPa,respectively,which were normal increase of 260.0% and 311.7%,respectively,compared with the healthy model;and the maximum compressive stresses on the medial and lateral femoral condylar cartilage were 8.5 and 7.8 MPa,respectively,which were 214.8% and 271.4% higher than the normal models,respectively.When the medial meniscus was replaced with the PCL scaffold,the maximum compressive stresses on the medial and lateral cartilage of the tibial plateau articular cartilage were 2.7 and 1.8 MPa,respectively,which were 8.0% and5.9% higher than those of the healthy knee joint model,respectively.The maximum compressive stresses on the medial and lateral femoral condyle cartilage were 3.0 and 2.2 Mpa,respectively,which were 11.1% and 4.8%higher than the normal model.Conclusion:The three-dimensional finite element model of knee joint of PCL material has good biomechanical ability,which can reduce the stress of articular cartilage of femoral condyle and tibial plateau after meniscectomy and achieve the purpose of protecting the articular cartilage.
引文
[1]DANGELMAJER S,FAMILIARI F,SIMONETTA R,et al.Meniscal transplants and scaffolds:A systematic review of the literature[J].Knee Surg Relat Res,2017,29(1):3-10.
    [2]SEEDHOM B B,HARGREAVES D.Transmission of the load in the knee joint with special reference of the role of the menisci[J].Eng Med,1979,8(3):220-228.
    [3]FOX A J,WANIVENHAUS F,BURGE A J,et al.The human meniscus:a review of anatomy,function,injury,and advances in treatment[J].Clin Anat,2015,28(2):269-287.
    [4]ZHANG Y D,HOU S X,ZHONG H B,et al.Meniscal allograft transplantation using a novel all-arthroscopic technique with specifically designed instrumentation[J].Exp Ther Med,2018,15(3):3020-3027.
    [5]XUE C,ZHANG L,SHUANG F,et al.Robust revascularization,despite impaired VEGF production,after meniscus allograft transplantation in rabbits[J].Am JSports Med,2013,41(11):2668-2675.
    [6]GUO W,LIU S,ZHU Y,et al.Advances and prospects in tissue-engineered meniscal scaffolds for meniscus regeneration[J].Stem Cells Int,2015,2015:517-520.
    [7]MORAN C J,WITHERS D P,KURZWEIL P R,et al.Clinical application of scaffolds for partial meniscus replacement[J].Sports Med Arthrosc Rev,2015,23(3):156-161.
    [8]SUN J,VIJAYAVENKATARAMAN S,LIU H.An overview of scaffold design and fabrication technology for engineered knee meniscus[J].Materials(Basel),2017,10(1):E29.
    [9]VRANCKEN A C,EGGERMONT F,van TIENEN T G,et al.Functional biomechanical performance of a novel anatomically shaped polycarbonate urethane total meniscus replacement[J].Knee Surg Sports Traumatol Arthrosc,2016,24(5):1485-1494.
    [10]王宇,穆尚强,梅继文,等.可膨胀椎间融合器治疗腰椎间盘轻度退变的有限元分析[J].吉林大学学报:医学版,2016,42(3):565-569.
    [11]JOHANNESDOTTIR F,ALLAIRE B,BOUXSEIN M L.Fracture prediction by computed tomography and finite element analysis:current and future perspectives[J].Curr Osteoporos Rep,2018,16(4):411-422.
    [12]ZHOU G,JIANG H,YIN Z,et al.In vitro regeneration of patient-specific ear-shaped cartilage and Its first clinical application for auricular reconstruction[J].EBio Med,2018,28:287-302.
    [13]GAO M C,ZHANG H Y,DONG W,et al.Tissueengineered trachea from a 3D-printed scaffold enhances wholesegment tracheal repair[J].Sci Rep,2017,7(1):5246.
    [14]NEUFURTH M,WANG X H,WANG S,et al.3Dprinting of hybrid biomaterials for bone tissue engineering:Calciumpolyphosphate microparticles encapsulated by polycaprolactone[J].Acta Biomater,2017,64(3):377-388.
    [15]黄瀛.中国人解剖学数值[M].北京:人民卫生出版社,2002:27.
    [16]HAUT TL,HULL M L,HOWELL S M.Use of roentgenography and magnetic resonance imaging to predict meniscal geometry determined with a three-dimensional coordinate digitizing system[J].J Orthop Res,2000,18(2):228-237.
    [17]王岩,周飞虎,周勇刚,等.国人正常膝关节三维几何形态测量及相关研究[J].中国矫形外科杂志,2004,12(8):617-619.
    [18]KEDGLEY A E,SAW T H,SEGAL N A,et al.Predicting meniscal tear stability across knee-joint flexion using finiteelement analysis[J].Knee Surg Sports Traumatol Arthrosc,2018.DOI:10.1007/S00167-018-5090-4.
    [19]SHRIRAM D,PRAVEEN KUMAR G,CUI F S,er al.Evaluating the effects of material properties of artificial meniscal implant in the human knee joint using finite element analysis[J].Sci Rep,2017,7(1):6011-6012.
    [20]DONG Y F,HU G H,DONG Y H,et al.The effect of meniscal tears and resultant partial meniscectomies on the knee contact stresses:a finite element analysis[J].Comput Methods Biomech Biomed Engin,2014,17(13):1452-1463.
    [21]FUKUBAYASHI T,KUROSAWA H.The contact area and pressure distribution pattern of the knee.A study of normal and osteoarthrotic knee joints[J].Acta Orthop Scand,1980,51(6):871-879.
    [22]CHA J G,YOO J H,RHEE S J,et al.MR imaging of articular cartilage at 1.5Tand 3.0T:comparison of IDEAL2DFSE and 3D SPGR with fat-saturated 2D FSE and 3DSPGR in a porcine model[J].Acta Radiol,2014,55(4):462-469.
    [23]LI X,YU C,WU H,et al.Prospective comparison of 3DFIESTA versus fat-suppressed 3D SPGR MRI in evaluating knee cartilage lesions[J].Clin Radiol,2009,64(10):1000-1008.
    [24]BOXHEIMER L,LUTZ A M,TREIBER K,et al.MRImaging of the knee:Position related changes of the menisci in asymptomatic volunteers[J].Radiology,2004,39(5):254-263.
    [25]BARATZ M E,FU F H,MENQATO R,et al.Meniscal tears:the effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee.Apreliminary report[J].Am J Sports Med,1986,14(4):270-275.
    [26]PENA E,CALVO B,MARTNEZ M A,et al.Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics[J].Clin Biomech(Bristol,Avon),2005,20(5):498-507.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700