川西亚高山不同森林类型土壤呼吸和总硝化速率的季节动态
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Seasonal dynamics of soil respiration and gross nitrification rate of different subalpine forests in western Sichuan
  • 作者:刘顺 ; 杨洪国 ; 罗达 ; 史作民 ; 刘千里 ; 张利
  • 英文作者:LIU Shun;YANG Hongguo;LUO Da;SHI Zuomin;LIU Qianli;ZHANG Li;Key Laboratory of Forest Ecology and Environmental Sciences,State Forestry Administration,Institute of Forest Ecology,Environment and Protection,Chinese Academy of Forestry;Co-Innovation Center for Sustainable Forestry in Southern China;Aba Prefecture Institute of Forestry Science and Technology;
  • 关键词:土壤呼吸 ; 总硝化速率 ; 季节动态 ; 林型 ; 亚高山
  • 英文关键词:soil respiration;;gross nitrification rate;;seasonal dynamics;;forest type;;subalpine
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国林业科学研究院森林生态环境与保护研究所国家林业局森林生态环境重点实验室;南京林业大学南方现代林业协同创新中心;阿坝州林业科学技术研究所;
  • 出版日期:2018-10-18 14:57
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:中央级公益性科研院所基本科研业务费专项资金资助项目(CAFYBB2014MA004,CAFYBB2018ZA003);; 国家重点研发计划项目(2016YFC0502104-02)
  • 语种:中文;
  • 页:STXB201902016
  • 页数:11
  • CN:02
  • ISSN:11-2031/Q
  • 分类号:155-165
摘要
川西亚高山原始林及其采伐后通过不同恢复措施形成的不同类型森林土壤呼吸和总硝化速率的对比分析及其耦合关系的研究相对匮乏。采用气压过程分离系统(Ba PS)技术研究了川西亚高山岷江冷杉原始林及其砍伐后恢复的粗枝云杉阔叶林、红桦-岷江冷杉天然次生林和粗枝云杉人工林土壤呼吸和总硝化速率的季节动态及其影响因素。结果表明:生长季内平均土壤呼吸速率和总硝化速率分别以粗枝云杉阔叶林和粗枝云杉人工林较高,均以岷江冷杉原始林较低。土壤呼吸和总硝化速率在生长季内具有明显的季节动态,呈以7月份最高的单峰趋势。土壤呼吸和总硝化速率与土壤温度显著相关,而与土壤水分相关性不显著,表明土壤温度是调控呼吸和总硝化作用季节动态的主要因子。土壤呼吸的温度敏感性(Q_(10))介于2.59—4.71,以岷江冷杉原始林最高,表明高海拔的岷江冷杉原始林可能更易受到气候变化的影响。林型间土壤呼吸和总硝化速率主要受凋落物量、p H和有机质的影响。不同林型间土壤呼吸和总硝化速率显著正相关,表明土壤呼吸和总硝化速率存在耦合关系。
        Comparisons of carbon and nitrogen transformation and their coupling relationships among different forest types,including primary and restoration forests after primary forest harvesting in the subalpine region of western Sichuan,are relatively limited. In this study,we measured the seasonal dynamics of soil respiration and gross nitrification rate using the barometric process separation(BaPS) technique and examined their possible effect in Abies faxoniana primary,Picea asperata broadleaved mixed,natural secondary Betula-Abies,and P. asperata plantation forests. The results showed that the average soil respiration and gross nitrification rate during the growing season were the highest in P. asperata broadleaved mixed forest and P. asperata plantation forest,respectively,and were the lowest in A. faxoniana primary forest. The soil respiration and gross nitrification rates varied obviously during the growing season,peaking in July. They were significantlycorrelated with soil temperature(P<0.05),but were not significantly correlated with soil water content,indicating that soil temperature,rather than soil water content,is a controlling factor in the regulation of the seasonal dynamics of soil respiration and gross nitrification. Soil respiration temperature sensitivity varied from 2.59 to 4.71 with the highest in the A.faxoniana primary forest,suggesting primary forests at high altitudes may be more vulnerable to climate change. Soil respiration and gross nitrification rates among forest types were mainly influenced by litter mass,p H,and soil organic matter. The soil respiration rate was positively correlated with the gross nitrification rate in different forest types,indicating a coupling relationship between soil respiration and gross nitrification rates.
引文
[1] Janssens I A,Lankreijer H,Matteucci G,Kowalski A S,Buchmann N,Epron D,Pilegaard K,Kutsch W,Longdoz B,Grunwald T,Montagnani L,Dore S,Rebmann C,Moors E J,Grelle A,Rannik U,Morgenstern K,Oltchev S,Clement R,Gudmundsson J,Minerbi S,Berbigier P,Ibrom A,Moncrieff J,Aubinet M,Bernhofer C,Jensen N O,Vesala T,Granier A,Schulze E D,Lindroth A,Dolman A J,Jarvis P G,Ceulemans R,Valentini R. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology,2001,7(3):269-278.
    [2] Urakawa R,Ohte N,Shibata H,Isobe K,Tateno R,Oda T,Hishi T,Fukushima K,Inagaki Y,Hirai K,Oyanagi N,Nakata M,Toda H,Kenta T,Kuroiwa M,Watanabe T,Fukuzawa K,Tokuchi N,Μgawa S,Enoki T,Nakanishi A,Saigusa N,Yamao Y,Kotani A. Factors contributing to soil nitrogen mineralization and nitrification rates of forest soils in the Japanese archipelago. Forest Ecology and Management,2016,361:382-396.
    [3] Colman B P,Schimel J P. Drivers of microbial respiration and net N mineralization at the continental scale. Soil Biology and Biochemistry,2013,60:65-76.
    [4] Ueda M U,Kachina P,Marod D,Nakashizuka T,Kurokawa H. Soil properties and gross nitrogen dynamics in old growth and secondary forest in four types of tropical forest in Thailand. Forest Ecology and Management,2017,398:130-139.
    [5] Poirier V,Coyea M R,Angers D A,Munson A D. Silvicultural treatments and subsequent vegetation impact long-term mineral soil biogeochemistry in mixedwood plantations. Forest Ecology and Management,2016,368:140-150.
    [6] Zhao N N,Li X G. Effects of aspect-vegetation complex on soil nitrogen mineralization and microbial activity on the Tibetan Plateau. Catena,2017,155:1-9.
    [7] Quan Q,Wang C H,He N P,Zhang Z,Wen X F,Su H X,Wang Q,Xue J Y. Forest type affects the coupled relationships of soil C and N mineralization in the temperate forests of northern China. Scientific Reports,2014,4:6584.
    [8] Xu Z H,Ward S,Chen C R,Blumfield T,Prasolova N,Liu J X. Soil carbon and nutrient pools,microbial properties and gross nitrogen transformations in adjacent natural forest and hoop pine plantations of subtropical Australia. Journal of Soils and Sediments,2008,8(2):99-105.
    [9] Luo D,Cheng R M,Shi Z M,Wang W X,Xu G X,Liu S R. Impacts of nitrogen-fixing and non-nitrogen-fixing tree species on soil respiration and microbial community composition during forest management in subtropical China. Ecological Research,2016,31(5):683-693.
    [10] Sulzman E W,Brant J B,Bowden R D,Lajtha K. Contribution of aboveground litter,belowground litter,and rhizosphere respiration to total soil CO2efflux in an old growth coniferous forest. Biogeochemistry,2005,73(1):231-256.
    [11] Wei X R,Wang X,Ma T E,Huang L Q,Pu Q,Hao M D,Zhang X C. Distribution and mineralization of organic carbon and nitrogen in forest soils of the southern Tibetan Plateau. Catena,2017,156:298-304.
    [12] Grdens A I,gren G I,Bird J A,Clarholm M,Hallin S,Ineson P,Ktterer T,Knicker H,Nilsson S I,Nsholm T,Ogle S,Paustian K,Persson T,Stendahl J. Knowledge gaps in soil carbon and nitrogen interactions-from molecular to global scale. Soil Biology and Biochemistry,2011,43(4):702-717.
    [13] Srivastava P,Singh R,Tripathi S,Singh P,Singh S,Singh H,Raghubanshi A Singh,Mishra P K. Soil carbon dynamics under changing climate—a research transition from absolute to relative roles of inorganic nitrogen pools and associated microbial processes:a review. Pedosphere,2017,27(5):792-806.
    [14]罗淑政.川西亚高山森林土壤呼吸研究[D].北京:中国科学院大学,2014.
    [15] Luo S Z,Liu G H,Li Z S,Hu C J,Gong L,Wang M,Hu H F. Soil respiration along an altitudinal gradient in a subalpine secondary forest in China. i Forest-Biogeosciences and Forestry,2014,8:526-532.
    [16] Chen Y C,Luo J,Li W,Yu D,She J. Comparison of soil respiration among three different subalpine ecosystems on eastern Tibetan Plateau,China. Soil Science and Plant Nutrition,2014,60(2):231-241.
    [17] Luo S Z,Liu G H,Hu C J,Li Z S. Soil respiration in a high-elevation subalpine forest in China. Journal of Food Agriculture and Environment,2014,12(2):982-985.
    [18]殷睿,徐振锋,吴福忠,杨万勤,熊莉,肖洒,马志良,李志萍.川西亚高山不同海拔3种森林群落土壤氮转化的季节动态.林业科学,2014,50(7):1-7.
    [19] Xu Z F,Liu Q,Yin H J. Effects of temperature on soil net nitrogen mineralization in two contrasting forests on the eastern Tibetan Plateau,China.Soil Research,2014,52(6):562-567.
    [20]李志杰,杨万勤,岳楷,贺若阳,杨开军,庄丽燕,谭波,徐振锋.温度对川西亚高山3种森林土壤氮矿化的影响.生态学报,2017,37(12):4045-4052.
    [21]刘义,陈劲松,刘庆,吴彦.川西亚高山针叶林不同恢复阶段土壤的硝化和反硝化作用.植物生态学报,2006,30(1):90-96.
    [22] Breuer L,Kiese R,Butterbach-Bahl K. Temperature and moisture effects on nitrification rates in tropical rain-forest soils. Soil Science Society of America Journal,2002,66(3):834-844.
    [23]张远东,赵常明,刘世荣.川西米亚罗林区森林恢复的影响因子分析.林业科学,2005,41(4):189-193.
    [24]周德彰,杨玉坡.四川西部高山林区桦木更新特性的初步研究.林业科学,1980,16(2):154-156.
    [25]张远东,赵常明,刘世荣.川西亚高山人工云杉林和自然恢复演替系列的林地水文效应.自然资源学报,2004,19(6):761-768.
    [26] Moyano F E,Kutsch W L,Rebmann C. Soil respiration fluxes in relation to photosynthetic activity in broad-leaf and needle-leaf forest stands.Agricultural and Forest Meteorology,2008,148(1):135-143.
    [27] Wang C K,Yang J Y,Zhang Q Z. Soil respiration in six temperate forests in China. Global Change Biology,2006,12(11):2103-2114.
    [28]褚金翔.川西亚高山林区土地利用与覆盖变化对土壤呼吸的影响[D].泰安:山东农业大学,2005.
    [29] Xu Y B,Xu Z H. Effects of land use change on soil gross nitrogen transformation rates in subtropical acid soils of Southwest China. Environmental Science and Pollution Research,2015,22(14):10850-10860.
    [30] Wang C H,Wang N N,Zhu J X,Liu Y,Xu X F,Niu S L,Yu G R,Han X G,He N P. Soil gross N ammonification and nitrification from tropical to temperate forests in eastern China. Functional Ecology,2018,32(1):83-94.
    [31] Lang M,Cai Z C,Mary B,Hao X Y,Chang S X. Land-use type and temperature affect gross nitrogen transformation rates in Chinese and Canadian soils. Plant and Soil,2010,334(1/2):377-389.
    [32] Fu M H,Xu X C,Tabatabai M A. Effect of p H on nitrogen mineralization in crop-residue-treated soils. Biology and Fertility of Soils,1987,5(2):115-119.
    [33] Kemmitt S J,Wright D,Goulding K W T,Jones D L. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biology and Biochemistry,2006,38(5):898-911.
    [34]骆土寿,陈步峰,李意德,林明献,周光益,陈德祥,邱坚锐.海南岛尖峰岭热带山地雨林土壤和凋落物呼吸研究.生态学报,2001,21(12):2013-2017.
    [35] Chen Q S,Wang Q B,Han X G,Wan S Q,Li L H. Temporal and spatial variability and controls of soil respiration in a temperate steppe in northern China. Global Biogeochemical Cycles,2010,24(2):GB2010.
    [36]宁丽丹,石辉,周海军,刘世荣.岷江上游不同植被下土壤团聚体特征分析.应用生态学报,2005,16(8):1405-1410.
    [37] Mueller C W,Schlund S,Prietzel J,K9gel-Knabner I,Gutsch M. Soil aggregate destruction by ultrasonication increases soil organic matter mineralization and mobility. Soil Science Society of America Journal,2012,76(5):1634-1643.
    [38] Norman J M,Kucharik C J,Gower S T,Baldocchi D D,Crill P M,Rayment M,Savage K,Striegl R G. A comparison of six methods for measuring soil-surface carbon dioxide fluxes. Journal of Geophysical Research,1997,102(D24):28771-28777.
    [39]周非飞,林波,刘庆,李维民.青藏高原东缘不同林龄云杉林冬季土壤呼吸特征.应用与环境生物学报,2009,15(6):761-767.
    [40]刘义,陈劲松,尹华军,刘庆,林波.川西亚高山针叶林土壤硝化作用及其影响因素.应用与环境生物学报,2006,12(4):500-505.
    [41] Luo J,Chen Y C,Wu Y H,Shi P L,She J,Zhou P. Temporal-spatial variation and controls of soil respiration in different primary succession stages on glacier forehead in Gongga Mountain,China. PLoS One,2012,7(8):e42354.
    [42] Xu M,Qi Y. Soil-surface CO2efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology,2001,7(6):667-677.
    [43] Cheng Y,Cai Z C,Zhang J B,Lang M,Mary B,Chang S X. Soil moisture effects on gross nitrification differ between adjacent grassland and forested soils in central Alberta,Canada. Plant and Soil,2012,352(1/2):289-301.
    [44] Li C S. Modeling trace gas emissions from agricultural ecosystems. Nutrient Cycling in Agroecosystems,2000,58(1/3):259-276.
    [45] Qi Y,Xu M. Separating the effects of moisture and temperature on soil CO2efflux in a coniferous forest in the Sierra Nevada mountains. Plant and Soil,2001,237(1):15-23.
    [46]褚金翔,张小全.川西亚高山林区三种土地利用方式下土壤呼吸动态及组分区分.生态学报,2006,26(6):1693-1700.
    [47] Luan J W,Liu S R,Zhu X L,Wang J X,Liu K. Roles of biotic and abiotic variables in determining spatial variation of soil respiration in secondary oak and planted pine forests. Soil Biology and Biochemistry,2012,44(1):143-150.
    [48] Yu S Q,Chen Y Q,Zhao J,Fu S L,Li Z A,Xia H P,Zhou L X. Temperature sensitivity of total soil respiration and its heterotrophic and autotrophic components in six vegetation types of subtropical China. Science of the Total Environment,2017,607-608:160-167.
    [49] Xu Z F,Tang S S,Xiong L,Yang W Q,Yin H J,Tu L H,Wu F Z,Chen L H,Tan B. Temperature sensitivity of soil respiration in China's forest ecosystems:patterns and controls. Applied Soil Ecology,2015,93:105-110.
    [50] Janssens I A,Pilegaard K. Large seasonal changes in Q10of soil respiration in a beech forest. Global Change Biology,2003,9(6):911-918.
    [51] Peng S S,Piao S L,Wang T,Sun J Y,Shen Z H. Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biology and Biochemistry,2009,41(5):1008-1014.
    [52] Chen H,Tian H Q. Does a general temperature-dependent Q10model of soil respiration exist at biome and global scale? Journal of Integrative Plant Biology,2005,47(11):1288-1302.
    [53] Zhao J X,Li R C,Li X,Tian L H. Environmental controls on soil respiration in alpine meadow along a large altitudinal gradient on the central Tibetan Plateau. Catena,2017,159:84-92.
    [54] Zheng Z M,Yu G R,Fu Y L,Wang Y S,Sun X M,Wang Y H. Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content:a trans-China based case study. Soil Biology and Biochemistry,2009,41(7):1531-1540.
    [55] Curiel Yuste J,Janssens I A,Carrara A,Ceulemans R. Annual Q10of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Global Change Biology,2004,10(2):161-169.
    [56]罗亚晨,吕瑜良,杨浩,何念鹏,李胜功,高文龙.冻融作用下寒温带针叶林土壤碳氮矿化过程研究.生态环境学报,2014,23(11):1769-1775.
    [57] Parfitt R L,Scott N A,Ross D J,Salt G J,Tate K R. Land-use change effects on soil C and N transformations in soils of high N status:comparisons under indigenous forest,pasture and pine plantation. Biogeochemistry,2003,66(3):203-221.
    [58] Song M H,Jiang J,Xu X L,Shi P L. Correlation between CO2efflux and net nitrogen mineralization and its response to external C or N supply in an alpine meadow soil. Pedosphere,2011,21(5):666-675.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700