数据驱动的工业过程运行监控与自优化研究展望
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Perspectives on Data-driven Operation Monitoring and Self-optimization of Industrial Processes
  • 作者:刘强 ; 卓洁 ; 郎自强 ; 秦泗钊
  • 英文作者:LIU Qiang;ZHUO Jie;LANG Zi-Qiang;QIN S.Joe;State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University;Department of Automatic Control and Systems Engineering,University of Sheffield;Department of Chemical Engineering and Materials Science, University of Southern California;
  • 关键词:复杂工业过程 ; 运行监控 ; 异常工况诊断 ; 自愈控制 ; 自优化
  • 英文关键词:Complex industrial processes;;operation monitoring;;abnormal situation diagnosis;;self-healing control;;self optimization
  • 中文刊名:MOTO
  • 英文刊名:Acta Automatica Sinica
  • 机构:东北大学流程工业综合自动化国家重点实验室;英国谢菲尔德大学控制系;美国南加州大学化工系;
  • 出版日期:2018-11-22 12:13
  • 出版单位:自动化学报
  • 年:2018
  • 期:v.44
  • 基金:国家自然科学基金(61673097,61490704,61573022,61490701);; 中央高校基本科研业务费(N160804002,N160801001)资助~~
  • 语种:中文;
  • 页:MOTO201811004
  • 页数:13
  • CN:11
  • ISSN:11-2109/TP
  • 分类号:26-38
摘要
现代工业过程向大规模、连续化、集成化方向发展,有必要对生产全流程运行的决策、协同控制、底层控制进行有效监控,也是当前国际控制领域的研究热点.本文首先分析了工业过程全流程运行监控的内涵与行业现状;其次,阐述了基于模型的控制系统故障诊断与容错控制方法,以及数据驱动的异常工况诊断与自愈控制方法的研究现状,并指明了信息物理系统(Cyber-physical systems, CPS)时代智能安全运行监控与自优化的发展机遇;最后,论述了工业过程运行监控与自优化研究的新方向和最新进展,包括:1)数据驱动的决策、协同控制、底层控制多层面联合监控; 2)基于机理、数据、知识多源动态信息融合的异常工况诊断; 3)专家知识与控制手段相结合的协同层自愈控制; 4)数据驱动的运行动态性能分析与自优化; 5)支撑运行监控与自优化系统的实现技术.
        With the development towards large-scale, continuous, and integrated modern industrial processes, it is essential to effectively monitor the plant-wide operations that cover decision, cooperative control, and base-level control. The operation monitoring has recently become an active area of research both in academia and industry. Firstly, the demanding work of operation monitoring and the current status in industrial area are analyzed in this paper. Secondly, the existing methods on model-based fault diagnosis and fault-tolerant control, and data driven abnormal situation diagnosis and self healing control are reviewed, while the opportunities are analyzed under cyber physical systems(CPS) circumstances.Finally, future research directions and recent progresses on the topic of operation monitoring and self-optimization of industrial processes are discussed, including: 1) data-driven multi-level comprehensive monitoring of decision, cooperative control, and base-level control; 2) multi-source dynamic information based abnormal situation diagnosis that combines first principles, process data, and expert knowledge; 3) cooperative self-healing control which combines expert knowledge and control strategy; 4) data driven dynamic performance analysis of process operation and self-optimization; and 5)technologies that implement operation monitoring and self-optimization system.
引文
1 Chai Tian-You. Industrial process control systems:research status and development direction. Scientia Sinica:Informationis, 2016, 46(8):1003-1015(柴天佑.工业过程控制系统研究现状与发展方向.中国科学:信息科学, 2016, 46(8):1003-1015)
    2 Chai Tian-You. Operational optimization and feedback control for complex industrial processes. Acta Automatica Sinica, 2013, 39(11):1744-1757(柴天佑.复杂工业过程运行优化与反馈控制.自动化学报, 2013,39(11):1744-1757)
    3 Zhang Y L, Dudzic M S. TIndustrial application of multivariate SPC to continuous caster start-up operations for breakout prevention. Control Engineering Practice, 2006,14(11):1357-1375
    4 Zhang Y L, Dudzic M S. Online monitoring of steel casting processes using multivariate statistical technologies:from continuous to transitional operations. Journal of Process Control, 2006, 16(8):819-829
    5 Isermann R, Ball′e P. Trends in the application of modelbased fault detection and diagnosis of technical processes.Control Engineering Practice, 1997, 5(5):709-719
    6 Patton R J, Chen J. Observer-based fault detection and isolation:robustness and applications. Control Engineering Practice, 1997, 5(5):671-682
    7 Zhou Dong-Hua, Hu Yan-Yan. Fault diagnosis techniques for dynamic systems. Acta Automatica Sinica, 2009, 35(6):748-758(周东华,胡艳艳.动态系统的故障诊断技术.自动化学报, 2009,35(6):748-758)
    8 Li X J, Yang G H. Fault detection in finite frequency domain for Takagi-Sugeno fuzzy systems with sensor faults.IEEE Transactions on Cybernetics, 2014, 44(8):1446-1458
    9 Wang H M, Yang G H, Ye D. Fault detection and isolation for affine fuzzy systems with sensor faults. IEEE Transactions on Fuzzy Systems, 2016, 24(5):1058-1071
    10 Zhou Dong-Hua, Ding X. Theory and applications of fault tolerant control. Acta Automatica Sinica, 2000, 26(6):788-797(周东华, Ding X.容错控制理论及其应用.自动化学报, 2000,26(6):788-797)
    11 Li Y X, Yang G H. Adaptive asymptotic tracking control of uncertain nonlinear systems with input quantization and actuator faults. Automatica, 2016, 72:177-185
    12 Zhang J X, Yang G H. Prescribed performance faulttolerant control of uncertain nonlinear systems with unknown control directions. IEEE Transactions on Automatic Control, 2017, 62(12):6529-6535
    13 Qin S J. Survey on data-driven industrial process monitoring and diagnosis. Annual Reviews in Control, 2012,36(2):220-234
    14 Westerhuis J A, Gurden S P, Smilde A K. Generalized contribution plots in multivariate statistical process monitoring. Chemometrics and Intelligent Laboratory Systems,2000, 51(1):95-114
    15 Dunia R, Qin S J. Subspace approach to multidimensional fault identification and reconstruction. AIChE Journal,1998, 44(8):1813-1831
    16 Alcala C F, Qin S J. Reconstruction-based contribution for process monitoring. Automatica, 2009, 45(7):1593-1600
    17 Zhao C H, Gao F R. Fault subspace selection approach combined with analysis of relative changes for reconstruction modeling and multifault diagnosis. IEEE Transactions on Control Systems Technology, 2016, 24(3):928-939
    18 Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H. Monitoring independent components for fault detection. AIChE Journal, 2003, 49(4):969-976
    19 Lee J M, Qin S J, Lee I B. Fault detection and diagnosis of multivariate processes based on modified independent component analysis. AIChE Journal, 2006, 52(10):3501-3514
    20 Kano M, Hasebe S, Hashimoto I, Ohno H. Evolution of multivariate statistical process control:application of independent component analysis and external analysis.Computers and Chemical Engineering, 2004, 28(6-7):1157-1166
    21 Liu Q, Chai T Y, Qin S J. Fault diagnosis of continuous annealing processes using a reconstruction-based method.Control Engineering Practice, 2012, 20(5):511-518
    22 Zhao C H, Sun Y X. Subspace decomposition approach of fault deviations and its application to fault reconstruction.Control Engineering Practice, 2013, 21(10):1396-1409
    23 Jiang Q C, Yan X F, Huang B. Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference. IEEE Transactions on Industrial Electronics, 2016, 63(1):377-386
    24 Qin S J, Valle S, Piovoso M J. On unifying multiblock analysis with application to decentralized process monitoring.Journal of Chemometrics, 2001, 15(9):715-742
    25 Cherry G A, Qin S J. Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis. IEEE Transactions on Semiconductor Manufacturing, 2006, 19(2):159-172
    26 Zhu J L, Ge Z Q, Song Z H. Distributed parallel PCA for modeling and monitoring of large-scale plant-wide processes with big data. IEEE Transactions on Industrial Informatics, 2017, 13(4):1877-1885
    27 Ge Z Q, Chen J H. Plant-wide industrial process monitoring:a distributed modeling framework. IEEE Transactions on Industrial Informatics, 2016, 12(1):310-321
    28 Liu Q, Qin S J, Chai T Y. Decentralized fault diagnosis of continuous annealing processes based on multilevel PCA.IEEE Transactions on Automation Science and Engineering, 2013, 10(3):687-698
    29 Nomikos P, MacGregor J F. Multi-way partial least squares in monitoring batch processes. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1):97-108
    30 Nomikos P, MacGregor J F. Multivariate SPC charts for monitoring batch processes. Technometrics, 1995, 37(1):41-59
    31 Zhao C H, Wang F L, Lu N Y, Jia M X. Stage-based softtransition multiple PCA modeling and on-line monitoring strategy for batch processes. Journal of Process Control,2007, 17(9):728-741
    32 Zhao C H, Wang W, Qin Y, Gao F R. Comprehensive subspace decomposition with analysis of between-mode relative changes for multimode process monitoring. Industrial and Engineering Chemistry Research, 2015, 54(12):3154-3166
    33 Zhao C H, Gao F R. Statistical modeling and online fault detection for multiphase batch processes with analysis of between-phase relative changes. Chemometrics and Intelligent Laboratory Systems, 2014, 130:58-67
    34 Zhao C H, Zhang W D. Reconstruction based fault diagnosis using concurrent phase partition and analysis of relative changes for multiphase batch processes with limited fault batches. Chemometrics and Intelligent Laboratory Systems, 2014, 130:135-150
    35 Kassidas A, MacGregor J F, Taylor P A. Synchronization of batch trajectories using dynamic time warping. AIChE Journal, 1998, 44(4):864-875
    36 MacGregor J F, Jaeckle C, Kiparissides C, Koutoudi M.Process monitoring and diagnosis by multiblock PLS methods. AIChE Journal, 1994, 40(5):826-838
    37 Trygg J, Wold S. Orthogonal projections to latent structures(O-PLS). Journal of Chemometrics, 2002, 16(3):119-128
    38 Li G, Qin S J, Zhou D H. Geometric properties of partial least squares for process monitoring. Automatica, 2010,46(1):204-210
    39 Zhou D H, Li G, Qin S J. Total projection to latent structures for process monitoring. AIChE Journal, 2010, 56(1):168-178
    40 Qin S J, Zheng Y Y. Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures. AIChE Journal, 2013, 59(2):496-504
    41 Liu Q, Qin S J, Chai T Y. Multiblock concurrent PLS for decentralized monitoring of continuous annealing processes. IEEE Transactions on Industrial Electronics, 2014,61(11):6429-6437
    42 Peng K X, Zhang K, Li G, Zhou D H. Contribution rate plot for nonlinear quality-related fault diagnosis with application to the hot strip mill process. Control Engineering Practice, 2013, 21(4):360-369
    43 Li G, Qin S J, Zhou D H. Output relevant fault reconstruction and fault subspace extraction in total projection to latent structures models. Industrial and Engineering Chemistry Research, 2010, 49(19):9175-9183
    44 Zhao C H, Sun Y X. Multispace total projection to latent structures and its application to online process monitoring.IEEE Transactions on Control Systems Technology, 2014,22(3):868-883
    45 Ding S X, Yin S, Peng K X, Hao H Y, Shen B. A novel scheme for key performance indicator prediction and diagnosis with application to an industrial hot strip mill. IEEE Transactions on Industrial Informatics, 2013, 9(4):2239-2247
    46 Peng K X, Zhang K, You B, Dong J. Quality-relevant fault monitoring based on efficient projection to latent structures with application to hot strip mill process. IET Control Theory and Applications, 2015, 9(7):1135-1145
    47 Peng Kai-Xiang, Ma Liang, Zhang Kai. Review of qualityrelated fault detection and diagnosis techniques for complex industrial processes. Acta Automatica Sinica, 2017,43(3):349-365(彭开香,马亮,张凯.复杂工业过程质量相关的故障检测与诊断技术综述.自动化学报, 2017, 43(3):349-365)
    48 Zhu Q Q, Liu Q, Qin S J. Concurrent quality and process monitoring with canonical correlation analysis. Journal of Process Control, 2017, 60:95-103
    49 Ku W F, Storer R H, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis.Chemometrics and Intelligent Laboratory Systems, 1995,30(1):179-196
    50 Negiz A, C?inar A. Statistical monitoring of multivariable dynamic processes with state-space models. AIChE Journal, 1997, 43(8):2002-2020
    51 Simoglou A, Martin E B, Morris A J. Statistical performance monitoring of dynamic multivariate processes using state space modelling. Computers and Chemical Engineering, 2002, 26(6):909-920
    52 Wang J, Qin S J. A new subspace identification approach based on principal component analysis. Journal of Process Control, 2002, 12(8):841-855
    53 Ding S X, Zhang P, Naik A, Ding E L, Huang B. Subspace method aided data-driven design of fault detection and isolation systems. Journal of Process Control, 2009, 19(9):1496-1510
    54 Li W H, Qin S J. Consistent dynamic PCA based on errors-in-variables subspace identification. Journal of Process Control, 2001, 11(6):661-678
    55 Li G, Qin S J, Zhou D H. A new method of dynamic latentvariable modeling for process monitoring. IEEE Transactions on Industrial Electronics, 2014, 61(11):6438-6445
    56 Dong Y N, Qin S J. A novel dynamic PCA algorithm for dynamic data modeling and process monitoring. Journal of Process Control, 2018, 67:1-11
    57 Qin S J, McAvoy T J. Nonlinear PLS modeling using neural networks. Computers and Chemical Engineering, 1992,16(4):379-391
    58 Lindgren F, Geladi P, Wold S. The kernel algorithm for PLS. Journal of Chemometrics, 1993, 7(1):45-59
    59 Zhu Q Q, Liu Q, Qin S J. Quality-relevant fault detection of nonlinear processes based on kernel concurrent canonical correlation analysis. In:Proceedings of the 2017 American Control Conference(ACC). Seattle, USA:IEEE, 2017. 24-26
    60 Yoo C K, Lee J M, Vanrolleghem P A, Lee I B. On-line monitoring of batch processes using multiway independent component analysis. Chemometrics and Intelligent Laboratory Systems, 2004, 71(2):151-163
    61 Pan Y J, Yang C J, An R Q, Sun Y X. Fault detection with improved principal component pursuit method. Chemometrics and Intelligent Laboratory Systems, 2016, 157:111-119
    62 Fan Ji-Cong, Wang You-Qing, Qin S Joe. Combined indices for ICA and their applications to multivariate process fault diagnosis. Acta Automatica Sinica, 2013, 39(5):494-501(樊继聪,王友清,秦泗钊.联合指标独立成分分析在多变量过程故障诊断中的应用.自动化学报, 2013, 39(5):494-501)
    63 Ray A, Tangirala S. Stochastic modeling of fatigue crack dynamics for on-line failure prognostics. IEEE Transactions on Control Systems Technology, 1996, 4(4):443-451
    64 Luo J H, Bixby A, Pattipati K, Qiao L, Kawamoto M, Chigusa S. An interacting multiple model approach to modelbased prognostics. In:Proceedings of the 2003 IEEE International Conference on Systems, Man, and Cybernetics. Conference Theme—System Security and Assurance(Cat. No.03CH37483). Washington, USA:IEEE, 2003. 189-194
    65 Yan J H, Ko?c M, Lee J. A prognostic algorithm for machine performance assessment and its application. Production Planning and Control, 2004, 15(8):796-801
    66 Garga A K, McClintic K T, Campbell R L, Yang C C, Lebold M S, Hay T A, et al. Hybrid reasoning for prognostic learning in CBM systems. In:Proceedings of the 2001 IEEE Aerospace Conference Proceedings(Cat.No.01TH8542). Big Sky, USA:IEEE, 2001. 2957-2969
    67 Gao Jin-Ji. Research on the fault self-recovery principle of equipment system. Engineering Science, 2005, 7(5):43-48(高金吉.装备系统故障自愈原理研究.中国工程科学, 2005, 7(5):43-48)
    68 Wang Qing-Feng, Gao Jin-Ji, Yuan Qing-Bin, Jiang ZhiNong. Research and application of self-recovery smart electro-hydraulic control system on axial-blower static blade adjustable actuator. Journal of Mechanical Engineering, 2016, 52(20):185-192(王庆锋,高金吉,袁庆斌,江志农.主风机静叶可调执行机构自愈化智能电液控制系统.机械工程学报, 2016, 52(20):185-192)
    69 Chai T Y, Ding J L, Wu F H. Hybrid intelligent control for optimal operation of shaft furnace roasting process. Control Engineering Practice, 2011, 19(3):264-275
    70 Wu Z W, Wu Y J, Chai T Y, Sun J. Data-driven abnormal condition identification and self-healing control system for fused magnesium furnace. IEEE Transactions on Industrial Electronics, 2015, 62(3):1703-1715
    71 Qin S J. Process data analytics in the era of big data.AIChE Journal, 2014, 60(9):3092-3100
    72 Liu Qiang, Qin S Joe. Perspectives on big data modeling of process industries. Acta Automatica Sinica, 2016, 42(2):161-171(刘强,秦泗钊.过程工业大数据建模研究展望.自动化学报, 2016,42(2):161-171)
    73 Kaspar M H, Ray W H. Dynamic PLS modelling for process control. Chemical Engineering Science, 1993, 48(20):3447-3461
    74 Lakshminarayanan S, Shah S L, Nandakumar K. Modeling and control of multivariable processes:dynamic PLS approach. AIChE Journal, 1997, 43(9):2307-2322
    75 Li G, Liu B S, Qin S J, Zhou D H. Quality relevant datadriven modeling and monitoring of multivariate dynamic processes:the dynamic T-PLS approach. IEEE Transactions on Neural Networks, 2011, 22(12):2262-2271
    76 Dong Y N, Qin S J. Regression on dynamic PLS structures for supervised learning of dynamic data. Journal of Process Control, 2018, 68:64-72
    77 Dong Y N, Qin S J. Dynamic latent variable analytics for process operations and control. Computers and Chemical Engineering, 2018, 114(9):69-80
    78 Liu Q, Qin S J, Chai T Y. Unevenly sampled dynamic data modeling and monitoring with an industrial application.IEEE Transactions on Industrial Informatics, 2017, 13(5):2203-2213
    79 Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry. Computers and Chemical Engineering, 2009, 33(4):795-814
    80 Singhal A, Seborg D E. Evaluation of a pattern matching method for the Tennessee Eastman challenge process.Journal of Process Control, 2006, 16(6):601-613
    81 Li G, Qin S J, Ji Y D, Zhou D H. Reconstruction based fault prognosis for continuous processes. Control Engineering Practice, 2010, 18(10):1211-1219
    82 Wang K, Chen J H, Song Z H. Performance analysis of dynamic PCA for closed-loop process monitoring and its improvement by output oversampling scheme. IEEE Transactions on Control Systems Technology, 2017, DOI:10.1109/TCST.2017.2765621
    83 McNabb C A, Qin S J. Fault diagnosis in the feedbackinvariant subspace of closed-loop systems. Industrial and Engineering Chemistry Research, 2005, 44(8):2359-2368
    84 Peng Z K, Lang Z Q, Wolters C, Billings S A, Worden K. Feasibility study of structural damage detection using NARMAX modelling and nonlinear output frequency response function based analysis. Mechanical Systems and Signal Processing, 2011, 25(3):1045-1061
    85 Lang Z Q, Billings S A. Energy transfer properties of nonlinear systems in the frequency domain. International Journal of Control, 2005, 78(5):345-362
    86 Sun Peng, Chai Tian-You, Zhou Xiao-Jie, Yue Heng.Flame image recognition system for alumina rotary kiln burning zone. Journal of Chemical Industry and Engineering(China), 2008, 59(7):1839-1842(孙鹏,柴天佑,周晓杰,岳恒.氧化铝回转窑烧成带火焰图像识别系统.化工学报, 2008, 59(7):1839-1842)
    87 Lu T C, Chang C C. Color image retrieval technique based on color features and image bitmap. Information Processing and Management, 2007, 43(2):461-472
    88 Zadeh L A. Probability measures of fuzzy events. Journal of Mathematical Analysis and Applications, 1968, 23(2):421-427
    89 Tahani H, Keller J M. Information fusion in computer vision using the fuzzy integral. IEEE Transactions on Systems, Man, and Cybernetics, 1990, 20(3):733-741
    90 Keogh E, Kasetty S. On the need for time series data mining benchmarks:a survey and empirical demonstration.Data Mining and Knowledge Discovery, 2003, 7(4):349-371
    91 Rakthanmanon T, Campana B, Mueen A, Batista G,Westover B, Zhu Q, et al. Addressing big data time series:mining trillions of time series subsequences under dynamic time warping. ACM Transactions on Knowledge Discovery from Data, 2013, 7(3):Article No.10
    92 Yuan Q L, Lennox B. Control performance assessment for multivariable systems based on a modified relative variance technique. Journal of Process Control, 2009, 19(3):489-497
    93 Yu J, Qin S J. MIMO control performance monitoring using left/right diagonal interactors. Journal of Process Control, 2009, 19(8):1267-1276
    94 Lee K H, Tamayo E C, Huang B. Industrial implementation of controller performance analysis technology. Control Engineering Practice, 2010, 18(2):147-158
    95 Liu Y, Wang F L, Chang Y Q. Operating optimality assessment based on optimality related variations and nonoptimal cause identification for industrial processes. Journal of Process Control, 2016, 39:11-20
    96 Liu Y, Wang F L, Chang Y Q, Ma R C. Operating optimality assessment and nonoptimal cause identification for nonGaussian multimode processes with transitions. Chemical Engineering Science, 2015, 137:106-118
    97 Skogestad S. Plantwide control:the search for the selfoptimizing control structure. Journal of Process Control,2000, 10(5):487-507
    98 J¨aschke J, Cao Y, Kariwala V. Self-optimizing control—a survey. Annual Reviews in Control, 2017, 43:199-223
    99 Ye Ling-Jian, Guan Hong-Wei. Self-optimizing control of gold cyanidation leaching process. Control and Decision,2017, 32(3):481-486(叶凌箭,关宏伟.金氰化浸出过程的自优化控制.控制与决策,2017, 32(3):481-486)
    100 Ye Ling-Jian, Song Zhi-Huan, Ma Xiu-Shui. Batch-tobatch self-optimizing control for batch processes. CIESC Journal, 2015, 66(7):2573-2580(叶凌箭,宋执环,马修水.间歇过程的批间自优化控制.化工学报,2015, 66(7):2573-2580)
    101 Li Kang, Wang Fu-Li, He Da-Kuo, Jia Run-Da. A databased compensation method for optimal setting of hydrometallurgical process. Acta Automatica Sinica, 2017,43(6):1047-1055(李康,王福利,何大阔,贾润达.基于数据的湿法冶金全流程操作量优化设定补偿方法.自动化学报, 2017, 43(6):1047-1055)
    102 Wu X D, Zhu X Q, Wu G Q, Ding W. Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(1):97-107
    103 Ginsberg J, Mohebbi M H, Patel R S, Brammer L, Smolinski M S, Brilliant L. Detecting influenza epidemics using search engine query data. Nature, 2009, 457(7232):1012-1014
    104 Dean J, Ghemawat S. MapReduce:simplified data processing on large clusters. In:Proceedings of the 6th Conference on Symposium on Opearting Systems Design and Implementation. San Francisco, USA:ACM, 2004. 137-150
    105 Zhang Y F, Gao Q X, Gao L X, Wang C R. PrIter:a distributed framework for prioritizing iterative computations.IEEE Transactions on Parallel and Distributed Systems,2013, 24(9):1884-1893
    106 Mackey L, Talwalkar A, Jordan M I. Divide-and-conquer matrix factorization. In:Proceedings of the 24th International Conference on Neural Information Processing Systems. Granada, Spain:ACM, 2011. 1134-1142
    107 Zhao W Z, Ma H F, He Q. Parallel K-means clustering based on MapReduce. In:Proceedings of the 1st International Conference on Cloud Computing. Beijing, China:IEEE, 2009. 674-679
    108 Bengio Y. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2009, 2(1):1-127
    109 Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006,313(5786):504-507

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700