基于FE-SEM大视域拼接技术定量表征致密砂岩储集空间——以泌阳凹陷核桃园组为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quantitative characterization of reservoir space of tight sandstones based on a large-view FE-SEM splicing technology: a case study on the Hetaoyuan Formation in Biyang sag
  • 作者:程泽虎 ; 薛海涛 ; 李文浩 ; 卢双舫 ; 周能武
  • 英文作者:Cheng Zehu;Xue Haitao;Li Wenhao;Lu Shuangfang;Zhou Nengwu;Research Institute of Unconventional Oil & Gas and Renewable Energy, China University of Petroleum(East China);School of Geosciences, China University of Petroleum(East China);
  • 关键词:定量表征 ; 储集空间类型 ; 场发射扫描电镜 ; 大视域拼接 ; 核三段 ; 泌阳凹陷
  • 英文关键词:quantitative characterization;;reservoir space type;;FE-SEM;;large-view splicing;;3rd member of Hetaoyuan Formation;;Biyang sag
  • 中文刊名:KTSY
  • 英文刊名:China Petroleum Exploration
  • 机构:中国石油大学(华东)非常规油气与新能源研究院;中国石油大学(华东)地球科学与技术学院;
  • 出版日期:2018-09-15
  • 出版单位:中国石油勘探
  • 年:2018
  • 期:v.23;No.118
  • 基金:国家科技重大专项“塔里木盆地奥陶系—寒武系有效烃源岩地球化学特征及油气源对比研究”(2016ZX05004-004-002);; 国家自然科学基金项目“页岩油储层储集空间定量表征及分级评价标准探讨——以江汉盆地为例”(41402122);; 中国石化科技计划项目“致密储层成储下限及分级评价标准”(P15028)
  • 语种:中文;
  • 页:KTSY201805010
  • 页数:9
  • CN:05
  • ISSN:11-5215/TE
  • 分类号:83-91
摘要
通过铸体薄片与场发射扫描电镜(FE-SEM),将泌阳凹陷核桃园组三段致密砂岩储层储集空间分为粒间孔、粒内孔、裂缝三大类,以粒间孔与粒内孔为主,再根据矿物组成将粒间孔划分为石英粒间孔、长石粒间孔、石英颗粒边缘孔、长石颗粒边缘孔、碳酸盐矿物粒间孔,将粒内孔分为石英溶蚀孔、长石溶蚀孔、碳酸盐矿物粒内孔、黏土矿物晶间孔等,粒内孔在中部3023~3035m层段相对发育。基于高分辨率FE-SEM大视域拼接技术,将上述所细分孔隙类型进行了定量标定。研究结果表明,泌阳凹陷核三段致密砂岩储层面孔率为3.75%,其中粒间孔与粒内孔面孔率分别为2.35%和1.38%,裂缝面孔率仅为0.02%。不同的储集空间类型中,孔隙直径的分布有所差异,其中石英粒间孔与长石粒间孔均以50~100nm的直径所占比例最大,占比分别为42.4%与30%,石英颗粒边缘孔与长石颗粒边缘孔则以直径100~200nm的居多,均占30%;粒间孔中,尽管直径大于1000nm的孔隙所占数量比例均小于6%,但其对孔隙面积的贡献非常大,其中直径大于1000nm的石英粒间孔与长石粒间孔均占其总孔隙面积的95%以上;各类型粒内孔均以直径100~200nm的孔隙为主,石英溶蚀孔及长石溶蚀孔在孔隙面积分布上与其他粒内孔有所差异,其孔隙面积以直径200~500nm的孔隙略具优势,所占比例均大于35%。
        Based on casting thin sections and FE-SEM(field emission scanning electron microscope), the reservoir space of tight sandstone in the 3 rd member of the Hetaoyuan Formation in the Biyang sag is divided into three types, including intergranular pores, intragranular pores and fractures. The former two, intergranular pores and intragranular pores, are primary reservoir space. According to the mineral composition, the intergranular pores are divided into quartz and feldspar intergranular pores, quartz and feldspar grain-boundary pores, and intergranular carbonate pores; the intragranular pores are divided into dissolved quartz and feldspar pores, intragranular carbonate pores and intercrystalline clay pores, which are relatively developed between 3023 m and 3035 m. Theses pore types are quantitatively calibrated based on a highresolution and large-view FE-SEM splicing technology. The results show that the surface porosity of the tight sandstone in the 3 rd member of Hetaoyuan Formation is 3.75%, of which intergranular pores, intragranular pores and fractures account for 2.35%, 1.38% and 0.02%, respectively. In various types of reservoirs, the pore diameters have some differences, the intergranular pores of quartz and feldspar mainly ranging from 50 to 100 nm account for 42.4% and 30% respectively, and the grain-boundary quartz and feldspar pores mostly from 100 to 200 nm account for 30% each. Although the intergranular pores larger than 1000 nm account for less than 6%, they contribute more to total pore volume, of which the intergranular quartz and feldspar pores larger than 1000 nm account for 95% of each pore volume. The intragranular pores in the range of 100 to 200 nm are dominant; quartz and feldspar dissolution pores are slight different from other types, and the pores between 200 and 500 nm are dominant, and account for more than 35% of each total pore volume.
引文
[1]贾承造,邹才能,李建忠,李登华,郑民.中国致密油评价标准、主要类型、基本特征及资源前景[J].石油学报,2012,33(3):343-350.Jia Chengzao,Zou Caineng,Li Jianzhong,Li Denghua,Zheng Min.Assessment criteria,main types,basic features and resource prospects of the tight oil in China[J].Acta Petrolei Sinica,2012,33(3):333-350.
    [2]王伟明,李勇,汪正江,聂舟,陈斌,颜照坤,等.致密砂岩储层岩石脆性评价及相关因素分析[J].中国石油勘探,2016,21(6):50-57.Wang Weiming,Li Yong,Wang Zhengjiang,Nie Zhou,Chen Bin,Yan Zhaokun,et al.Evaluation of rock brittleness and analysis of related factors for tight sandstone reservoirs[J].China Petroleum Exploration,2016,21(6):50-57.
    [3]郭迎春,庞雄奇,陈冬霞,姜福杰,汤国民.致密砂岩气成藏研究进展及值得关注的几个问题[J].石油与天然气地质,2013,34(6):717-724.Guo Yingchun,Pang Xiongqi,Chen Dongxia,Jiang Fujie,Tang Guomin.Progress of research on hydrocarbon accumulation of tight sand gas and several issues for concerns[J].Oil&Gas Geology,2013,34(6):717-724.
    [4]庞河清,曾焱,刘成川,黎华继,李琦,彭军,等.川西坳陷须五段储层微观孔隙结构特征及其控制因素[J].中国石油勘探,2017,22(4):48-60.Pang Heqing,Zeng Yan,Liu Chengchuan,Li Huaji,Li Qi,Peng Jun,et al.Characteristics and controlling factors of micro-pore structure of Xu 5 reservoir in western Sichuan depression[J].China Petroleum Exploration,2017,22(4):48-60.
    [5]吴润桐,杨胜来,谢建勇,王敉邦,闫嘉威.致密油气储层基质岩心静态渗吸实验及机理[J].油气地质与采收率,2017,24(3):98-104.Wu Runtong,Yang Shenglai,Xie Jianyong,Wang Mibang,Yan Jiawei.Experiment and mechanism of spontaneous imbibition of matrix core in tight oil-gas reservoirs[J].Petroleum Geology and Recovery Efficiency,2017,24(3):98-104.
    [6]刘冬冬,张晨,罗群,张译丹,高阳,张云钊,等.准噶尔盆地吉木萨尔凹陷芦草沟组致密储层裂缝发育特征及控制因素[J].中国石油勘探,2017,22(4):36-47.Liu Dongdong,Zhang Chen,Luo Qun,Zhang Yidan,Gao Yang,Zhang Yunzhao,et al.Development characteristics and controlling factors of natural fractures in Permian Lucaogou Formation tight reservoir in Jimsar sag,Junggar Basin[J].China Petroleum Exploration,2017,22(4):36-47.
    [7]白斌,朱如凯,吴松涛,杨文静,Gelb J,Gu A,等.利用多尺度CT成像表征致密砂岩微观孔喉结构[J].石油勘探与开发,2013,40(3):329-333.Bai Bin,Zhu Rukai,Wu Songtao,Yang Wenjing,Gelb J,Gu A,et al.Multi-scale method of Nano(Micro)-CT study on microscopic pore structure of tight sandstone of Yanchang Formation,Ordos Basin[J].Petroleum Exploration and Development,2013,40(3):329-333.
    [8]白斌,朱如凯,吴松涛,崔景伟,苏玲,李婷婷.非常规油气致密储层微观孔喉结构表征新技术及意义[J].中国石油勘探,2014,19(3):78-86.Bai Bin,Zhu Rukai,Wu Songtao,Cui Jingwei,Su Ling,Li Tingting.New micro-throat structural characterization techniques for unconventional tight hydrocarbon reservoir[J].China Petroleum Exploration,2014,19(3):78-86.
    [9]尉鹏飞,张金川,隆帅,彭建龙,邓恩德,吕艳南,等.四川盆地及周缘地区龙马溪组页岩微观孔隙结构及其发育主控因素[J].中国石油勘探,2016,21(5):42-51.Wei Pengfei,Zhang Jinchuan,Long Shuai,Peng Jianlong,Deng Ende,LüYannan,et al.Characteristics and controlling factors of microscopic pore structure of Longmaxi Formation in Sichuan Basin and its periphery[J].China Petroleum Exploration,2016,21(5):42-51.
    [10]王海生.雷家地区湖相碳酸盐岩致密油储层微观特征[J].特种油气藏,2016,23(5):26-29.Wang Haisheng.Microscopic properties of lacustrine carbonate tight oil reservoir in Leijia[J].Special Oil&Gas Reservoirs,2016,23(5):26-29.
    [11]Loucks R G,Reed R M,Ruppel S C,Jarvie D M.Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J].Journal of Sedimentary Research,2009,79(12):848-861.
    [12]邹才能,朱如凯,白斌,杨智,吴松涛,苏玲,等.中国油气储层中纳米孔首次发现及其科学价值[J].岩石学报,2011,27(6):1857-1864.Zou Caineng,Zhu Rukai,Bai Bin,Yang Zhi,Wu Songtao,Su Ling,et al.First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J].Acta Petrologica Sinica,2011,27(6):1857-1864.
    [13]Rine J M,Smart E,Dorsey W,Hooghan K,Dixon M.Comparision of porosity distribution within selected north American shale units by SEM examination of argon-ion milled samples[J].Houston Geological Society Bulletin,2014,56(7):17-21.
    [14]徐祖新,张义杰,王居峰,刘海涛,姜文亚.渤海湾盆地沧东凹陷孔二段致密储层孔隙结构定量表征[J].天然气地球科学,2016,27(1):102-110.Xu Zuxin,Zhang Yijie,Wang Jufeng,Liu Haitao,Jiang Wenya.Quantitative characterization of pore structure of the second member of Kongdian Formation tight reservoirs in Cangdong sag[J].Natural Gas Geoscience,2016,27(1):102-110.
    [15]马世忠,张宇鹏.应用压汞实验方法研究致密储层孔隙结构——以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J].油气地质与采收率,2017,24(1):26-33.Ma Shizhong,Zhang Yupeng.Study on the pore structure of tight reservoir by using method of mercury injection-a case study of the Lucaogou Formation in Jimsar sag,Junggar Basin[J].Petroleum Geology and Recovery Efficiency,2017,24(1):26-33.
    [16]杨峰,宁正福,孔德涛,刘慧卿.高压压汞法和氮气吸附法分析页岩孔隙结构[J].天然气地球科学,2013,24(3):450-455.Yang Feng,Ning Zhengfu,Kong Detao,Liu Huiqing.Pore structure of shales from high pressure mercury injection and nitrogen adsorption method[J].Natural Gas Geoscience,2013,24(3):450-455.
    [17]Modica C J,Lapierre S G.Estimation of kerogen porosity in source rocks as a function of thermal transformation:example from the Mowry shale in the Powder River basin of Wyoming[J].AAPG Bulletin,2012,96(1):87-108.
    [18]高凤琳,宋岩,姜振学,张欣欣,陈磊.黏土矿物对页岩储集空间及吸附能力的影响[J].特种油气藏,2017,24(3):1-8.Gao Fenglin,Song Yan,Jiang Zhenxue,Zhang Xinxin,Chen Lei.Influence of clay minerals on shale storage space and adsorptive capacity[J].Special Oil&Gas Reservoirs,2017,24(3):1-8.
    [19]李爱芬,任晓霞,王桂娟,王永政,江凯亮.核磁共振研究致密砂岩孔隙结构的方法及应用[J].中国石油大学学报:自然科学版,2015,39(6):92-98.Li Aifen,Ren Xiaoxia,Wang Guijuan,Wang Yongzheng,Jiang Kailiang.Characterization of pore structure of low permeability reservoirs using a nuclear magnetic resonance method[J].Journal of China University of Petroleum:Edition of Natural Science,2015,39(6):92-98.
    [20]白松涛,程道解,万金彬,杨林,彭洪立,郭笑锴,等.砂岩岩石核磁共振T2谱定量表征[J].石油学报,2016,37(3):382-391.Bai Songtao,Cheng Daojie,Wan Jinbin,Yang Lin,Peng Hongli,Guo Xiaokai,et al.Quantitative characterization of sandstone NMR T2 spectrum[J].Acta Petrolei Sinica,2016,37(3):382-391.
    [21]孔强夫,周灿灿,李潮流,胡法龙.数字岩心电性数值模拟方法及其发展方向[J].中国石油勘探,2015,20(1):69-77.Kong Qiangfu,Zhou Cancan,Li Chaoliu,Hu Falong.Numerical simulation method of digital core electrical property and its development orientations[J].China Petroleum Exploration,2015,20(1):69-77.
    [22]毕明威,陈世悦,周兆华,商琳,郑国强,张满郞,等.鄂尔多斯盆地苏里格气田苏6区块盒8段致密砂岩储层微观孔隙结构特征及其意义[J].天然气地球科学,2015,26(10):1851-1861.Bi Mingwei,Chen Shiyue,Zhou Zhaohua,Shang Lin,Zheng Guoqiang,Zhang Manlang,et al.Characteristics and significance of microscopic pore structure in tight sandstone reservoir of the 8th Member of Lower Shihezi Formation in the Su6 area of Sulige gasfield[J].Natural Gas Geoscience,2015,26(10):1851-1861.
    [23]Desbois G,Urai J L,Kukla P A,Konstanty J,Baerle C.High-resolution 3D fabric and porosity model in a tight gas sandstone reservoir:a new approach to investigate microstructures from mm-to nm-scale combining argon beam cross-sectioning and SEM imaging[J].Journal of Petroleum Science and Engineering,2011,78(2):243-251.
    [24]王定一,车自成,张树田,蔺作文,顿铁军,刘来民.南襄盆地构造发育特征及形成机制[J].石油与天然气地质,1987,8(4):22-25.Wang Dingyi,Che Zicheng,Zhang Shutian,Lin Zuowen,Dun Tiejun,Liu Laimin.Tectonic developmental characteristics and formation mechanism of Nanxiang Basin[J].Oil&Gas Geology,1987,8(4):22-25.
    [25]董田,何生,林社卿.泌阳凹陷核桃园组烃源岩有机地化特征及热演化成熟史[J].石油实验地质,2013,35(2):187-194.Dong Tian,He Sheng,Lin Sheqing.Organic geochemical characteristics and thermal evolution maturity history modeling of source rocks in Eocene Hetaoyuan Formation of Biyang sag,Nanxiang Basin[J].Petroleum Geology&Experiment,2013,35(2):187-194.
    [26]章新文,王优先,王根林,朱颜,罗曦,陈希敏,等.河南省南襄盆地泌阳凹陷古近系核桃园组湖相页岩油储集层特征[J].古地理学报,2015,17(1):107-118.Zhang Xinwen,Wang Youxian,Wang Genlin,Zhu Yan,Luo Xi,Chen Ximin,et al.Reservoir characteristics of lacustrine shale oil of the Paleogene Hetaoyuan Formation in Biyang sag of Nanxiang Basin,Henan Province[J].Journal of Palaeogeography,2015,17(1):107-118.
    [27]邹才能,陶士振,白斌,杨智,朱如凯,侯连华,等.论非常规油气与常规油气的区别和联系[J].中国石油勘探,2015,20(1):1-16.Zou Caineng,Tao Shizhen,Bai Bin,Yang Zhi,Zhu Rukai,Hou Lianhua,et al.Differences and relations between unconventional and conventional oil and gas[J].China Petroleum Exploration,2015,20(1):1-16.
    [28]Cao Zhe,Liu Guangdi,Zhan Hongbin,Kong Yuhua,Niu Zicheng,Zhao Dongshan.Geological control factors of micro oil distribution in tight reservoirs[J].Marine and Petroleum Geology,2016,77:1193-1205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700