用户名: 密码: 验证码:
非磁性分隔层厚度对Fe/Cu多层纳米线磁性和电子特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of the thickness of nonmagnetic spacer on the magnetic and electronic properties of Fe/Cu multilayered nanowires
  • 作者:王喜志 ; 汤振兵 ; 马良财 ; 马玲 ; 张建民
  • 英文作者:WANG Xizhi;TANG Zhenbing;MA Liangcai;MA Ling;ZHANG Jianmin;School of Physics and Electronic-Electrical Engineering, Ningxia University;School of Physics and Information Technology, Shaanxi Normal University;
  • 关键词:多层纳米线 ; 磁性 ; 层间交换耦合 ; 第一性原理
  • 英文关键词:multilayered nanowires;;magnetic properties;;interlayer exchange coupling;;first-principles
  • 中文刊名:SXSZ
  • 英文刊名:Journal of Shaanxi Normal University(Natural Science Edition)
  • 机构:宁夏大学物理与电子电气工程学院;陕西师范大学物理学与信息技术学院;
  • 出版日期:2019-02-17 17:04
  • 出版单位:陕西师范大学学报(自然科学版)
  • 年:2019
  • 期:v.47;No.182
  • 基金:国家自然科学基金(11664032,11664033)
  • 语种:中文;
  • 页:SXSZ201902009
  • 页数:6
  • CN:02
  • ISSN:61-1071/N
  • 分类号:46-51
摘要
基于密度泛函理论框架下的第一性原理计算,研究了非磁性分隔层厚度对Fe/Cu多层纳米线磁性和电子特性的影响。结果表明:多层纳米线的稳定性随着非磁性Cu分隔层厚度的增加而降低,其层间交换耦合随非磁性Cu分隔层厚度的增加呈现出振荡衰减的特性,且其振荡周期为两个Cu原子层。自旋极化能带结构的计算结果表明,Fe/Cu多层纳米线的电导敏感地依赖于Cu分隔层的厚度。
        The influence of the thickness of nonmagnetic spacer on the magnetic and electronic properties of Fe/Cu multilayered nanowires was investigated systematically by using first-principles calculations based on the density-functional theory. It is found that the stability of both ferromagnetic and antiferromagnetic configuration Fe/Cu multilayered nanowires decreases with increasing concentration of nonmagnetic Cu layers. The calculated interlayer exchange coupling(IEC) is found to switch as the thickness of nonmagnetic Cu spacer increases in the nanowire, and the magnitude of the IEC value is found to decrease significantly with increasing the number of nonmagnetic Cu layers. The oscillation period of IEC is found to be 2 Cu spacer layers. The analysis of the spin-polarized band structures suggests a sensitive dependence of conductance upon the thickness of nonmagnetic Cu spacer.
引文
[1] BAIBICH M N, BROTO J M, FERT A, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices[J].Physical Review Letter, 1988, 61 (21): 2472-2475.
    [2] BINASCH G, GRüNBERG P, SAURENBACH F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange[J].Physical Review B, 1989, 39 (7): 4828-4830.
    [3] PARKIN S S P, MORE N, ROCHE K P. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr[J].Physical Review Letter, 1990, 64 (19): 2304-2307.
    [4] PRINZ G A. Magnetoelectronics[J].Science, 1998, 282 (5394): 1660-1663.
    [5] 庞绍芳, 屈世显, 张永元, 等. 有限长金属纳米线调控纳米线波导的传输特性研究[J].陕西师范大学学报(自然科学版), 2015,43(5): 22-26.
    [6] 马良财, 张建民.铜纳米线填充氮化硼纳米管结构和电子特性的第一性原理研究[J].陕西师范大学学报(自然科学版), 2017, 45(1): 40-44.
    [7] FEDOROV F S, M?NCH I, MICKEL C, et al. Electrochemical deposition of Co(Cu)/Cu multilayered nanowires[J].Journal of the Electrochemical Society, 2013, 160 (1): D13-D19.
    [8] CHOI J, OH S J, JU H, et al. Massive fabrication of free-standing one-dimensional Co/Pt nanostructures and modulation of ferromagnetism via a programmable barcode layer effect[J].Nano Letters, 2005, 5(11): 2179.
    [9] PENG Y, CULLIS T, M?BUS G, et al. Nanoscale characterization of CoPt/Pt multilayer nanowires[J].Nanotechnology, 2007, 18(48): 485704.
    [10] WANG H Z, HUANG B, DENG H Q, et al. Effect of sub-layer thickness on magnetic and giant magnetoresistance properties of Ni-Fe/Cu/Co/Cu multilayered nanowire arrays[J].Chinese Journal of Chemical Engineering, 2015, 23: 1231-1235.
    [11] B?NERT T, NIEMANN A C, MICHEL A K, et al. Magnetothermopower and magnetoresistance of single Co-Ni/Cu multilayered nanowires[J].Physical Review B, 2014, 90:165416.
    [12] 杜秀娟, 张建民. Cu纳米线弛豫结构和电子性质[J].陕西师范大学学报(自然科学版), 2010, 38(1): 32-36.
    [13] 马良财, 张建民. 不同晶向Cu纳米线结构和电子特性的第一性原理计算[J].陕西师范大学学报(自然科学版), 2015, 43(2): 28-33.
    [14] 马良财, 马玲, 张建民. Fe或Cr单原子链填充Cu纳米管的稳定性与磁性[J].复合材料学报, 2017, 34(11): 12-18.
    [15] PANIGRAHI P, PATI R. Controlling interlayer exchange coupling in one-dimensional Fe/Pt multilayered nanowire[J].Physical Review B, 2009, 79(1): 014411.
    [16] PAL P P, PATI R. Magnetic properties of one-dimensional Ni/Cu and Ni/Al multilayered nanowires: role of nonmagnetic spacers[J].Physical Review B, 2008, 77(14): 144430.
    [17] PANIGRAHI P, VALSAKUMAR M C. Spacer induced magnetism and its effect on interlayer exchange coupling in Fe/(Pd, Cu, Au, Ag) multilayered nanowires[J].The European Physical Journal B, 2011, 80: 459.
    [18] TANG X T, WANG G C, SHIMA M. Layer thickness dependence of CPP giant magnetoresistance in individual CoNi/Cu multilayer nanowires grown by electrodeposition[J].Physical Review B, 2007, 75:134404.
    [19] 杨皓哲, 曾敏, 刘晓芳, 等. NiCo/Cu多层纳米线的制备、表征以及磁化反转机制的研究[J].航空学报, 2014, 35(10): 2819-2825.
    [20] PAN F, YANG T, ZHANG J, et al.Fe/Pd nano-multilayers prepared by vapour deposition, and their magnetic anomaly[J].Journal of Physics: Condensed Matter, 1993, 5(40): L507.
    [21] FU C L, FREEMAN A J, OGUCHI T. Prediction of strongly enhanced two-dimensional ferromagnetic moments on metallic overlayers, interfaces, and superlattices[J].Physical Review Letter, 1985, 54(25): 2700-2703.
    [22] MCHENRY M E, MACLAREN J M. Iron and chromium monolayer magnetism in noble-metal hosts: systematics of local moment variation with structure[J].Physical Review B, 1991, 43(13): 10611-10616.
    [23] ALMASI-KASHI M, RAMAZANI A, KHEYRI F, et al. The effect of magnetic layer thickness on magnetic properties of Fe/Cu multilayer nanowires[J].Materials Chemistry and Physics, 2014, 144: 230-234.
    [24] KRESSE G, HAFNER J. Ab initio molecular-dynamics simulation of the liquid metal amorphous semiconductor transition in germanium[J].Physical Review B, 1994, 49(20): 14251-14269.
    [25] KRESSE G, FURTHMüLLER J. Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J].Computational Materials Science, 1996, 6(1): 15-50.
    [26] KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].Physical Review B, 1996, 54(16): 11169-11186.
    [27] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J].Physical Review B, 1999, 59(3): 1758-1775.
    [28] PERDEW J P, BURKE S, ERNZERHOF M. Generalized gradient approximation made simple[J].Physical Review Letter, 1996, 77(18): 3865-3868.
    [29] MONKHORST H J, PACK J D. Special points for Brillouin-Zone intergrations[J].Physical Review B, 1976, 13(12): 5188-5192.
    [30] PANIGRAHI P, PATI R. Tuning the ferromagnetism of one-dimensional Fe/Pt/Fe multilayer barcode nanowires via the barcode layer effect[J].Physical Review B, 2007, 76: 024431.
    [31] DOS SANTOS A V, KUHNEN C A. Magnetic and electronic structure of Fe/Cu bilayers[J].Thin Solid Films, 1999, 350(1/2): 186-191.
    [32] GONG H R, KONG L T, LIU B X. Structural stability and magnetic properties of metastable Fe-Cu alloys studied by ab initio calculations and molecular dynamics simulations[J].Physical Review B, 2004, 69: 054203.
    [33] BADER R. Atoms in molecules: a quantum theory[M].New York: Oxford University Press, 1990.
    [34] PARKIN S S P, BHADRA R, ROCHE K P. Oscillatory magnetic exchange coupling through thin copper layers[J].Physical Review Letter, 1991, 66(16): 2152-2155.
    [35] JOHNSON M T, PURCELL S T, MCGEE N W E, et al. Structural dependence of the oscillatory exchange interaction across Cu layers[J].Physical Review Letter, 1992, 68(17): 2688-2691.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700