环境因子对土壤微生物呼吸及其温度敏感性变化特征的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Environmental Factors on Variation Characteristics of Soil Microbial Respiration and Its Temperature Sensitivity
  • 作者:张彦 ; 郭胜利
  • 英文作者:ZHANG Yan-jun;GUO Sheng-li;State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,Institute of Soil and Water Conservation,Northwest A&F University;Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation,College of Geography and Environment Engineering,Baoji University of Arts and Sciences;
  • 关键词:土壤微生物呼吸 ; 土壤微生物呼吸温度敏感性 ; 土壤水分 ; 土壤温度 ; 黄土高原
  • 英文关键词:soil microbial respiration rate;;temperature sensitivity of soil microbial respiration;;soil moisture;;soil temperature;;Loess Plateau
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:西北农林科技大学水土保持研究所;宝鸡文理学院地理与环境学院陕西省灾害监测与机理模拟重点实验;
  • 出版日期:2017-12-29 10:49
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(41801069,41601016);; 陕西省科技厅项目(2018JQ3023);; 宝鸡文理学院博士科研启动费项目(ZK2017041)
  • 语种:中文;
  • 页:HJKZ201903051
  • 页数:11
  • CN:03
  • ISSN:11-1895/X
  • 分类号:438-448
摘要
在田间条件下研究土壤微生物呼吸及其温度敏感性(Q10)的变化特征及其影响因素对准确理解地区的气候变暖潜力具有重要意义.本研究依托长武农田生态试验站的裸地处理,利用土壤碳通量系统(Li~8100)连续6 a (2008~2013年)监测裸地处理下的呼吸速率、土壤温度和水分,探究土壤微生物呼吸及其温度敏感性的变化特征及其影响因素.在日变化尺度上,土壤微生物呼吸速率的变化特征呈单峰曲线,且这种变化趋势主要与土壤温度有关(P <0. 05),然而日平均土壤微生物呼吸速率和Q10在不同土壤水分含量条件下不同.均呈现出:适度的土壤水分条件>较高的土壤水分条件>较低土壤水分条件的趋势[土壤微生物呼吸速率:1. 20μmol·(m~2·s)~(-1)、0. 95μmol·(m~2·s)~(-1)、0. 79μmol·(m~2·s)~(-1); Q10:2. 12、1. 93、1. 59].在季节尺度上,土壤微生物呼吸速率和Q10均呈现出雨季大于非雨季的趋势[土壤微生物呼吸速率:1. 11μmol·(m~2·s)~(-1)、0. 90μmol·(m~2·s)~(-1); Q10:1. 96、1. 59],且这种变化趋势与土壤温度和水分的变化有关(P <0. 05),然而土壤温度和土壤水分的双变量模型比土壤温度或者土壤水分的单变量模型能解释更多的土壤微生物呼吸季节变异性(R~2:0. 45~0. 82、0. 32~0. 67、0. 35~0. 86;模拟值和实测值的拟合系数:0. 76、0. 64、0. 58).在年际尺度上,年累积土壤微生物呼吸变化于226 g·(m~2·a)~(-1)和298 g·(m~2·a)~(-1)之间,Q10变化于1. 48~1. 94之间,而年累积土壤微生物呼吸和Q10的年际变异性主要与年平均土壤水分含量有关(P <0. 05),且年平均土壤水分别可以解释39%和54%的年累积土壤微生物呼吸和Q10年际变异性.在裸地处理上,土壤有机碳由试验初的6. 5 g·kg~(-1)下降到目前的5. 5 g·kg~(-1),但是年累积土壤微生物呼吸却高达255 g·(m~2·a)~(-1),即裸地处理的呼吸流失量比土壤有机碳的流失量高20倍以上.
        Studying the effect of environmental factors on the variation of soil microbial respiration and its temperature sensitivity( Q10)at different time scales under field conditions is of great significance for accurately understanding the region's climate warming potential.From March 2008 to November 2013,in situ soil microbial respiration rates were determined using an automated CO_2 flux system( Li ~8100) in long-term bare fallow soil at the Changwu State Key Agro-Ecosystem Experimental Station,Shaanxi,China,for studying the effect of environmental factors on the variation of soil microbial respiration and Q10 at different time scales. At diurnal time scales,the daily variation of soil microbial respiration rates showed a single-peak curve,which was closely related to soil temperature( P < 0. 05);whereas the daily mean soil microbial respiration rate and Q10 varied with soil moisture,with both showing the order of moderate soil moisture conditions > higher soil moisture conditions > lower soil moisture conditions [daily mean soil microbial respiration rate: 1. 20μmol·( m~2·s)~(-1) vs. 0. 95 μmol·( m~2·s)~(-1) vs. 0. 79 μmol·( m~2·s)~(-1); Q10: 2. 12 vs. 1. 93 vs. 1. 59]. At seasonal time scales,both the seasonal mean soil microbial respiration rate and Q10 showed the order of rainy season > non-rainy season [seasonal mean soil microbial respiration rate: 1. 11 μmol·( m~2·s)~(-1) vs. 0. 90 μmol·( m~2·s)~(-1); Q10: 1. 96 vs. 1. 59],which was consistent with the trend of soil temperature and moisture( soil temperature: 20. 39 vs. 14. 50℃; soil moisture: 49. 2% vs. 38. 6%). The bivariate model of soil temperature and soil moisture could explain the greater seasonal variability of the soil microbial respiration rate than did the univariate model of soil temperature or soil moisture( R~2: 0. 45-0. 82 vs. 0. 32-0. 67 vs. 0. 35-0. 86; the fitting coefficient between the simulated and measured soil microbial respiration rates: 0. 76 vs. 0. 64 vs. 0. 58). At annual time scales,the annual cumulative soil microbial respiration ranged from 226 to 298 g·( m~2·a)~(-1),with an average of 253 g·( m~2·a)~(-1),and the annual Q10 ranged from1. 48 to 1. 94,with an average of 1. 70. The annual cumulative soil microbial respiration and Q10 showed a negative quadratic correlation with annual mean soil moisture( P < 0. 05),with the annual mean soil moisture explaining 39% and 54% of the annual variability of annual cumulative soil microbial respiration and Q10,respectively. In the bare soil treatment,the soil organic carbon decreased from 6. 5 g·kg~(-1) at the beginning of the experiment to 5. 5 g·kg~(-1) at present; whereas,the annual cumulative soil microbial respiration was up to 255 g·( m~2·a)~(-1) and the loss of annual cumulative soil microbial respiration was 20 times larger than the loss of soil organic carbon in the Loess Plateau region,China.
引文
[1]Lal R.Carbon sequestration[J].Philosophical Transactions of the Royal Society B:Biological Sciences,2008,363(1492):815-830.
    [2]Jobbágy E G,Jackson R B.The vertical distribution of soil organic carbon and its relation to climate and vegetation[J].Ecological Applications,2000,10(2):423-436.
    [3]Kuzyakov Y.Sources of CO2efflux from soil and review of partitioning methods[J].Soil Biology and Biochemistry,2006,38(3):425-448.
    [4]Subke J A,Inglima I,Francesca Cotrufo M.Trends and methodological impacts in soil CO2efflux partitioning:a metaanalytical review[J].Global Change Biology,2006,12(6):921-943.
    [5]Ise T,Moorcroft P R.The global-scale temperature and moisture dependencies of soil organic carbon decomposition:an analysis using a mechanistic decomposition model[J].Biogeochemistry,2006,80(3):217-231.
    [6]Bauer J,Herbst M,Huisman J A,et al.Sensitivity of simulated soil heterotrophic respiration to temperature and moisture reduction functions[J].Geoderma,2008,145(1-2):17-27.
    [7]Conant R T,Ryan M G,Agren G I,et al.Temperature and soil organic matter decomposition rates-synthesis of current knowledge and a way forward[J].Global Change Biology,2011,17(11):3392-3404.
    [8]Moyano F E,Manzoni S,Chenu C.Responses of soil heterotrophic respiration to moisture availability:an exploration of processes and models[J].Soil Biology and Biochemistry,2013,59:72-85.
    [9]Hamdi S,Moyano F,Sall S,et al.Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions[J].Soil Biology and Biochemistry,2013,58:115-126.
    [10]张彦军,郭胜利,刘庆芳,等.田间条件下黑垆土基础呼吸的季节和年际变化特征[J].生态学报,2013,33(22):7270-7276.Zhang Y J,Guo S L,Liu Q F,et al.Seasonal and annual variation characteristic in basal soil respiration of black loam under the condition of farmland field[J].Acta Ecologica Sinica,2013,33(22):7270-7276.
    [11]Agren G I,Wetterstedt JAM.What determines the temperature response of soil organic matter decomposition?[J].Soil Biology and Biochemistry,2007,39(7):1794-1798.
    [12]Davidson E A,Janssens I A,Luo Y Q.On the variability of respiration in terrestrial ecosystems:moving beyond Q10[J].Global Change Biology,2006,12(2):154-164.
    [13]Vanhala P,Karhu K,Tuomi M,et al.Transplantation of organic surface horizons of boreal soils into warmer regions alters microbiology but not the temperature sensitivity of decomposition[J].Global Change Biology,2011,17(1):538-550.
    [14]Karhu K,Fritze H,Hamalainen K,et al.Temperature sensitivity of soil carbon fractions in boreal forest soil[J].Ecology,2010,91(2):370-376.
    [15]范分良,黄平容,唐勇军,等.微生物群落对土壤微生物呼吸速率及其温度敏感性的影响[J].环境科学,2012,33(3):932-937.Fan F L,Huang P R,Tang Y J,et al.Altered microbial communities change soil respiration rates and their temperature sensitivity[J].Environmental Science,2012,33(3):932-937.
    [16]Zhang Y J,Guo S L,Zhao M,et al.Soil moisture influence on the interannual variation in temperature sensitivity of soil organic carbon mineralization in the Loess Plateau[J].Biogeosciences,2015,12(11):3655-3664.
    [17]Suseela V,Conant R T,Wallenstein M D,et al.Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old‐field climate change experiment[J].Global Change Biology,2012,18(1):336-348.
    [18]Zhang Q,Lei H M,Yang D W.Seasonal variations in soil respiration,heterotrophic respiration and autotrophic respiration of a wheat and maize rotation cropland in the North China Plain[J].Agricultural and Forest Meteorology,2013,180:34-43.
    [19]Poll C,Marhan S,Back F,et al.Field-scale manipulation of soil temperature and precipitation change soil CO2flux in a temperate agricultural ecosystem[J].Agriculture,Ecosystems&Environment,2013,165:88-97.
    [20]高会议,郭胜利,刘文兆.黄土旱塬裸地土壤呼吸特征及其影响因子[J].生态学报,2011,31(18):5217-5224.Gao H Y,Guo S L,Liu W Z.Characteristics of soil respiration in fallow and its influencing factors at arid-highland of Loess Plateau[J].Acta Ecologica Sinica,2011,31(18):5217-5224.
    [21]Nakadai T,Yokozawa M,Ikeda H,et al.Diurnal changes of carbon dioxide flux from bare soil in agricultural field in Japan[J].Applied Soil Ecology,2002,19(2):161-171.
    [22]Herbst M,Prolingheuer N,Graf A,et al.Characterization and understanding of bare soil respiration spatial variability at plot scale[J].Vadose Zone Journal,2009,8(3):762-771.
    [23]王亭亭,王秀君,赵成义,等.新疆南部农田裸地土壤呼吸变化特征[J].干旱区研究,2015,32(3):453-460.Wang T T,Wang X J,Zhao C Y,et al.Characteristics of soil respiration in bare soil of farmland in the South of Xinjiang[J].Arid Zone Research,2015,32(3):453-460.
    [24]Xu M,Qi Y.Spatial and seasonal variations of Q10determined by soil respiration measurements at a Sierra Nevadan Forest[J].Global Biogeochemical Cycles,2001,15(3):687-696.
    [25]Tang J W,Qi Y,Xu M,et al.Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada[J].Tree Physiology,2005,25(1):57-66.
    [26]Bond-Lamberty B,Wang C K,Gower S T.A global relationship between the heterotrophic and autotrophic components of soil respiration?[J].Global Change Biology,2004,10(10):1756-1766.
    [27]Boone R D,Nadelhoffer K J,Canary J D,et al.Roots exert a strong influence on the temperature sensitivityof soil respiration[J].Nature,1998,396(6711):570-572.
    [28]Zhou X H,Wan S Q,Luo Y Q.Source components and interannual variability of soil CO2efflux under experimental warming and clipping in a grassland ecosystem[J].Global Change Biology,2007,13(4):761-775.
    [29]Gaumont-Guay D,Black T A,Barr A G,et al.Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand[J].Tree Physiology,2008,28(2):161-171.
    [30]Zhu B,Cheng W X.Rhizosphere priming effect increases the temperature sensitivity of soil organic matter decomposition[J].Global Change Biology,2011,17(6):2172-2183.
    [31]Zimmermann M,Leifeld J,Conen F,et al.Can composition and physical protection of soil organic matter explain soil respiration temperature sensitivity?[J].Biogeochemistry,2012,107(1-3):423-436.
    [32]Gaumont-Guay D,Black T A,Griffis T J,et al.Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand[J].Agricultural and Forest Meteorology,2006,140(1-4):220-235.
    [33]Wang B,Zha T S,Jia X,et al.Soil moisture modifies the response of soil respiration to temperature in a desert shrub ecosystem[J].Biogeosciences,2014,11(2):259-268.
    [34]Balogh J,Pintér K,Fóti S,et al.Dependence of soil respiration on soil moisture,clay content,soil organic matter,and CO2uptake in dry grasslands[J].Soil Biology and Biochemistry,2011,43(5):1006-1013.
    [35]Saiz G,Black K,Reidy B,et al.Assessment of soil CO2efflux and its components using a process-based model in a young temperate forest site[J].Geoderma,2007,139(1-2):79-89.
    [36]Reichstein M,Subke J A,Angeli A C,et al.Does the temperature sensitivity of decomposition of soil organic matter depend upon water content,soil horizon,or incubation time?[J].Global Change Biology,2005,11(10):1754-1767.
    [37]Singh B K,Bardgett R D,Smith P,et al.Microorganisms and climate change:terrestrial feedbacks and mitigation options[J].Nature Reviews Microbiology,2010,8(11):779-790.
    [38]Unger S,Máguas C,Pereira J S,et al.Interpreting post-drought rewetting effects on soil and ecosystem carbon dynamics in a Mediterranean oak savannah[J].Agricultural and Forest Meteorology,2012,154-155:9-18.
    [39]Cho E,Choi M.Regional scale spatio-temporal variability of soil moisture and its relationship with meteorological factors over the Korean peninsula[J].Journal of Hydrology,2014,516:317-329.
    [40]王昌江,施成晓,冯帆,等.集雨种植下不同沟垄比对土壤呼吸的影响及其对水热因子的响应[J].环境科学,2016,37(11):4437-4445.Wang C J,Shi C X,Feng F,et al.Soil respiration in response to different ridge/furrow ratios and its relationship with soil moisture and temperature under ridge-furrow planting patterns[J].Environmental Science,2016,37(11):4437-4445.
    [41]Conant R T,Dalla-Betta P,Klopatek C C,et al.Controls on soil respiration in semiarid soils[J].Soil Biology and Biochemistry,2004,36(6):945-951.
    [42]Smith V R.Moisture,carbon and inorganic nutrient controls of soil respiration at a sub-Antarctic island[J].Soil Biology and Biochemistry,2005,37(1):81-91.
    [43]Wan S Q,Norby R J,Ledford J,et al.Responses of soil respiration to elevated CO2,air warming,and changing soil water availability in a model old-field grassland[J].Global Change Biology,2007,13(11):2411-2424.
    [44]Manzoni S,Schimel J P,Porporato A.Responses of soil microbial communities to water stress:results from a metaanalysis[J].Ecology,2012,93(4):930-938.
    [45]Davidson E A,Verchot L V,Cattanio J H,et al.Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia[J].Biogeochemistry,2000,48(1):53-69.
    [46]Mc Culley R L,Boutton T W,Archer S R.Soil respiration in a subtropical savanna parkland:response to water additions[J].Soil Science Society of America Journal,2007,71(3):820-828.
    [47]李晋昌,董治宝,王训明.中国北方东部地区春季降尘量及其环境意义[J].中国沙漠,2008,28(2):195-201.Li J C,Dong Z B,Wang X M.Amount of spring dustfall and its environmental significance in east part of northern China[J].Journal of Desert Research,2008,28(2):195-201.
    [48]孙东怀,苏瑞侠,袁宝印,等.黄土高原现代天然降尘的组成、通量和磁化率[J].地理学报,2001,56(2):171-180.Sun D H,Su R X,Yuan B Y,et al.Composition,susceptibility and input flux of present aeolian dust over Loess Plateau of China[J].Acta Geographica Sinica,2001,56(2):171-180.
    [49]Yuan H Z,Ge T D,Chen C Y,et al.Significant role for microbial autotrophy in the sequestration of soil carbon[J].Applied and Environmental Microbiology,2012,78(7):2328-2336.
    [50]Kayler Z,Sulzman E,Mix A,et al.The measurement and analysis of the isotopic signature of soil respiration derived from subsurface carbon dioxide[A].In:EGU General Assembly 2010[C].Vienna,Austria:EGU,2010.
    [51]Jin X B,Wang S M,Zhou Y K.Microbial CO2production from surface and subsurface soil as affected by temperature,moisture,and nitrogen fertilisation[J].Australian Journal of Soil Research,2008,46(3):273-280.
    [52]Sakurai G,Jomura M,Yonemura S,et al.Inversely estimating temperature sensitivity of soil carbon decomposition by assimilating a turnover model and long-term field data[J].Soil Biology and Biochemistry,2012,46:191-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700