层状盐穴难溶夹层爆破效应数值模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation on the blasting of insoluble interlayer in bedded salt cavern
  • 作者:潘越 ; 李二兵 ; 尤业超 ; 濮仕坤 ; 段建立 ; 谭跃虎
  • 英文作者:PAN Yue;LI Erbing;YOU Yechao;PU Shikun;DUAN Jianli;TAN Yuehu;College of Defense Engineering,Army Engineering University of PLA;Jiangsu Transportation Research Institute Co.,Ltd.;
  • 关键词:岩石力学 ; 层状盐穴 ; 难溶夹层 ; 爆破效应 ; LS-DYNA
  • 英文关键词:rock mechanics;;layered salt cavern;;insoluble interlayer;;blasting effect;;LS-DYNA
  • 中文刊名:ZDCJ
  • 英文刊名:Journal of Vibration and Shock
  • 机构:中国人民解放军陆军工程大学国防工程学院;苏交科集团股份有限公司;
  • 出版日期:2019-07-28
  • 出版单位:振动与冲击
  • 年:2019
  • 期:v.38;No.346
  • 基金:国家自然科学基金(51408605)
  • 语种:中文;
  • 页:ZDCJ201914008
  • 页数:9
  • CN:14
  • ISSN:31-1316/TU
  • 分类号:60-67+109
摘要
难溶夹层控制爆破可消除层状盐穴建腔隐患、加强建腔速度。为研究层状盐穴难溶夹层爆破效应,采用带围压的分离式Hopkinson压杆(SHPB)装置开展了泥岩夹层动态力学特性试验,获得了泥岩夹层的塑性随动硬化模型参数,嵌入LS-DYNA有限元程序进行了模拟验证,建立了层状盐穴难溶夹层爆破数值模拟模型,揭示了不同炸药当量及药柱位置对夹层爆破垮塌范围以及盐腔密闭性的影响规律。研究结果表明:在LS-DYNA中采用塑形随动强化模型可以较好地拟合泥岩夹层动力特性;作用于盐腔围岩应力波通过卤水和夹层岩体两种介质传递,应力波在岩体中传播的速度明显大于在水中传播的速度;在本计算实例中选取药柱半径7.5 cm,高度6 m,炸药当量76.8 kg,并布置在夹层中部可促使夹层可控垮塌,并保证盐穴围岩的密闭性。
        The controlled blasting of insoluble interlayer can eliminate hidden dangers in the cavity construction and speed it up. In order to study the blasting effect of insoluble interlayer in bedded salt cavern, the dynamic mechanical properties of mudstone interlayer were tested by the split Hopkinson pressure bar(SHPB) device with confined pressure,and the parameters of a plastic-kinematic model were obtained. The LS-DYNA finite element program was embedded in the simulation verification, and the numerical model for the bedded salt cavern insoluble interlayer blasting was established. The influences of different explosive equivalent at different explosive positions on the collapse range of interlayer blasting and the tightness of salt chamber were revealed by the numerical simulation model. The results show that the dynamic characteristics of mudstone can be well fitted by using the plastic-kinematic model in LS-DYNA. The stress wave acting on the surrounding rock of salt chamber is transmitted through the brine and interbed rock mass. The velocity of stress wave in rock mass is obviously faster than that in water. In the case,of the column radius 7.5 cm, height 6 m, explosive equivalent 76.8 kg, the interlayer can be controlledly collapsed when the explosive is put in the middle of the interlayer,and the closeness of the surrounding rock of the salt cavern is ensured.
引文
[1]THOMS R L,GEHLE R M.A brief history of salt cavern use[C]∥Proceedings of the 8th World Salt Symposium(Volume1).[S.1]:Elsevier,2000.
    [2]李二兵.层状盐岩中天然气地下储存库稳定性评价研究[D].南京:解放军理工大学,2007.
    [3]李二兵,谭跃虎,马聪,等.三向压力作用下盐岩SHPB试验及动力强度研究[J].岩石力学与工程学报,2015,34(增刊2):3742-3749.LI Erbing,TAN Yuehu,MA Cong,et al.Split Hopkinson pressure bar test and dynamic strength research of salt rock under three-pressure[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(Sup2):3742-3749.
    [4]肖正学,张志呈,李端明.初始应力场对爆破效果的影响[J].煤炭学报,1996,21(5):497-501.XIAO Zhengxue,ZHANG Zhicheng,LI Duaniming.The influence of initial stress field on blasting[J].Journal of China Coal Society,1996,21(5):497-501.
    [5]谢源.高应力条件下岩石爆破裂纹扩展规律的模拟研究[J].湖南有色金属,2002,18(4):1-3.XIE Yuan.The modelling experiment for regularity of blasting crackle spread of rock under high stress conditions[J].Hunan Nonferrous Metals,2002,18(4):1-3.
    [6]袁青.地下储气库洞室开挖爆破围岩动力响应特性研究[D].武汉:中国地质大学,2017.
    [7]CHEN M,LU W B,YAN P,et al.Blasting excavation indeed damage of surrounding rock masses in deep-buried tunnels[J].KSCE Journal of Civil Engineering,2016,20(2):933-942.
    [8]夏祥,李海波,李俊如,等.岩体爆生裂纹的数值模拟[J].岩土力学,2006,27(11):1987-1991.XIA Xiang,LI Haibo,LI Junru,et al.Numerical simulation of blast-induced cracks in rock[J].Rock and Soil Mechanics,2006,27(11):1987-1991.
    [9]孙金山,左昌群,周传波,等.爆破应力波对邻近圆形隧道的动力扰动特征[J].振动与冲击,2015,34(18):7-18.SUN Jinshan,ZUO Changqun,ZHOU Chuanbo,et al.Dynamic distrubing on a round tunnel subjected to blasting seismic wave[J].Journal of Vibration and Shock,2015,34(18):7-18.
    [10]郭文章,王树仁,陈寿峰,等.节理岩体爆破数值模型及模拟研究[J].岩土力学,1998,19(3):1-9GUO Wenzhang,WANG Shuren,CHEN Shoufeng,et al.Numerical model and simulation on jointed rock masses under blasting[J].Rock and Soil Mechanics,1998,19(3):1-9.
    [11]高科.岩石SHPB实验技术数值模拟分析[D].长沙:中南大学,2009.
    [12]ZHU W C,BAI Y,LI X B,et al.Numerical simulation on rock failure under combined static and dynamic loading during SHPB tests[J].International Journal of Impact Engineering,2012,49:142-157.
    [13]ZHU J B,LIAO Z Y,TANG C A,Numerical SHPB tests of rocks under combined static and dynamic loading with application to dynamic behavior of rocks under in situ stresses[J].Rock Mechanic&Rock Engineering,2016,49(10):3935-3946.
    [14]詹金武,李涛.破碎泥岩注浆结石体动力特性的SHPB试验及数值模拟研究[J].岩土力学,2017,38(7):2096-2102.ZHAN Jinwu,LI Tao.SHPB tests and numerical simulation of dynamic behavior of grouting-reinforced fractured mudstone[J].Rock and Soil Mechanics,2017,38(7):2096-2102.
    [15]李莹.高应力岩体爆破作用效果的数值模拟[D].沈阳:东北大学,2013.
    [16]张风鹏,彭建宇,范光华,等.不同静应力和节理条件下岩体爆破破岩体机制研究[J].岩土力学,2016,37(7):1839-1913.ZHANG Fengpeng,PENG Jianyu,FAN Guanghua,et al.Mechanisms of blasting-induced rock fractures under different static stress and joint properties conditions[J].Rock and Soil Mechanics,2016,37(7):1839-1913.
    [17]陈江海,顾文彬,王振雄,等.洋山港水下多孔爆破陆地和水底震动实地测试与分析[J].振动与冲击,2016,35(24):207-220.CHEN Jianghai,GU Wenbin,WANG Zhenxiong,et al.Field measurement and signal analysis of land and water bottom vibrations induced by underwater multi-hole blasting at Yangshan Port[J].Journal of Vibration and Shock,2016,35(24):207-220.
    [18]陈春歌,申志兵,张贤凯,等.水下爆破冲击波危害及安全控制措施的模拟分析[J].安全与环境工程,2011,18(1):58-61.CHEN Chunge,SHEN Zhibing,ZHANG Xiankai,et al.Simulation of underwater explosion shock hazards and safety control[J].Safety and Environmental Engineering,2011,18(1):58-61.
    [19]王宏.水下钻孔爆破数值模拟研究[D].太原:中北大学,2014.
    [20]马淑娜,刘新宇,马林建,等.地下盐岩体中天然气储气库的地震动力稳定性研究[J].地下空间与工程学报,2013,9(增刊2):1833-1839.MA Shuna,LIU Xinyu,MA Lingjian,et al.Study on dynamic response of natural gas repository in underground salt rock mass[J].Chinese Journal of Underground Space and Engineering,2013,9(Sup2):1833-1839.
    [21]方秦,阮征,翟超辰,等.围压与温度共同作用下盐岩的SHPB实验及数值分析[J].岩石力学与工程学报,2012,31(9):1756-1765.FANG Qin,RUAN Zheng,ZHAI Chaochen,et al.Split hopkinson pressure bar test and numerical analysis of salt rock under confining pressure and temperature[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(9):1756-1765.
    [22]王健,李二兵,谭跃虎,等.层状盐岩及泥岩夹层动态力学特性对比试验[J].岩石力学与工程学报,2017,36(12):3002-3011.WANG Jian,LI Erbing,TAN Yuehu,et al.Comparative experimental study on dynamic mechanical properties of bedded salt rock and mudstone interbed[J].Chinese Journal of Rock Mechanics and Engineering,2017,36(12):3002-3011.
    [23]刘江.层状盐岩力学特性实验研究极其理论分析[D].武汉:中国科学院武汉岩土力学研究所,2006.
    [24]范光华.初始应力下岩石爆破过程模拟研究[D].沈阳:东北大学,2014.
    [25]PROVATIDIS C,KANARACHOS A,VENETSANOS D.Strength analysis of buried curved pipes due to blast explosions[J].Structures under Shock&Impact VI,2000,48:3-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700