放射性核素在矿物表面的吸附微观结构分析进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in Microscopic Structure of Radionuclides Sorption on Mineral Surface
  • 作者:谭小丽 ; 方明 ; 王祥科
  • 英文作者:TAN Xiao-li;FANG Ming;WANG Xiang-ke;MOE Key Laboratory of Resources and Environmental System Optimization,College of Environmental Science and Engineering, North China Electric Power University;
  • 关键词:核素 ; 吸附 ; XAFS ; 荧光光谱 ; 密度泛函理论(DFT)
  • 英文关键词:radionuclide;;sorption;;XAFS;;fluorescence spectra;;DFT
  • 中文刊名:HXFS
  • 英文刊名:Journal of Nuclear and Radiochemistry
  • 机构:华北电力大学环境科学与工程学院资源环境系统优化教育部重点实验室;
  • 出版日期:2019-04-15 15:59
  • 出版单位:核化学与放射化学
  • 年:2019
  • 期:v.41;No.176
  • 基金:国家自然科学基金资助项目(21707033,21777039,U1607102);; 中央高校基础研究资助项目(2017YFA0207002,2018ZD11)
  • 语种:中文;
  • 页:HXFS201901009
  • 页数:8
  • CN:01
  • ISSN:11-2045/TL
  • 分类号:101-108
摘要
放射性核素在矿物表面的吸附行为是影响其在环境中的浓度、迁移、转化及毒性的重要过程。本文简要介绍了放射性核素在吸附剂表面的吸附、沉淀、氧化还原反应的作用机理,针对放射性核素在矿物表面的微观吸附形态的研究中所使用的一些先进的实验分析方法,重点介绍了同步辐射X射线吸收精细结构(XAFS)技术、荧光分析以及理论计算等技术,并展望了放射性核素在矿物表面微观反应机制的研究趋势。
        The sorption of radionuclides on minerals plays an important role in the transport, migration, transformation and the remediation of the radionuclide in the environment. The mechanisms of sorption, precipitation and redox reactions have been introduced briefly. And the related advanced technologies, such as XAFS, fluorescence spectra and theoretical calculations, which have been used to study the microstructure and the speciation of radionuclides on minerals, have been discussed in detail. The trends on the microscopic mechanism of radionuclides on minerals are also proposed.
引文
[1] 庞宏伟,王祥学,姚文,等.金属氧化物材料对放射性核素的去除及机理研究[J].中国科学:化学,2018,48:58-73.
    [2] 杨姗也,王祥学,陈中山,等.四氧化三铁基纳米材料制备及对放射性核素及重金属离子的去除进展[J].化学进展,2018,30:225-242.
    [3] 梁宇,顾鹏程,姚文,等.碳基纳米材料对放射性核素铀的吸附研究[J].化学进展,2017,29:1062-1071.
    [4] Wang X,Chen Z,Tan X,et al.Effect of pH,humic acid and addition sequences on Eu(Ⅲ) sorption onto γ-Al2O3 study by batch and time resolved laser fluorescence spectroscopy[J].Chem Eng J,2016,287:313-320.
    [5] Mei H,Tan X,Tan L,et al.Retention of U(Ⅵ) by the formation of Fe precipitates from oxidation of Fe(Ⅱ)[J].ACS Earth Space Chem,doi:10.1021/acsearthspacechem.8b00055.
    [6] 陈海军,黄舒怡,张志宾,等.功能性纳米零价铁的构筑及其对环境放射性核素铀的富集应用研究进展[J].化学学报,2017,75:560-574.
    [7] Ren X,Yang S,Hu F,et al.Microscopic level investigation of Ni(Ⅱ) sorption on Na-rectorite by EXAFS technique combined with statistical F-tests[J].J Hazard Mater,2013,252:2-10.
    [8] Fan Q H,Tan X L,Li J X,et al.Sorption of Eu(Ⅲ) on attapulgite studied by batch,XPS and EXAFS techniques[J].Environ Sci Technol,2009,43(15):5776-5782.
    [9] Tan X,Ren X,Chen C,et al.Analytical approaches to the speciation of lanthanides at solid-water interfaces[J].Trend Anal Chem,2014,61:107-132.
    [10] Alexandratos V G,Behrends T,Cappellen P V.Fate of adsorbed U(Ⅵ) during sulfidization of lepidocrocite and hematite[J].Environ Sci Technol,2017,51:2140-2150.
    [11] Ding C,Cheng W,Sun Y,et al.Effects of Bacillus subtilis on the reduction of U(Ⅵ) by nano-Fe0[J].Geochim Geochim Acta,2015,165:86-107.
    [12] Du X,Boonchayaanant B,Wu W M,et al.Reduction of uranium(Ⅵ) by soluble iron(Ⅱ) conforms with thermodynamic predications[J].Environ Sci Technol,2011,45:4178-4725.
    [13] Tan X,Fang M,Ren X,et al.Effect of silicate on the formation and stability of Ni-Al LDH at the γ-Al2O3 surface[J].Environ Sci Technol,2014,48:13138-13145.
    [14] Sheng G D,Yang S T,Li Y M,et al.Retention mechanisms and microstructure of Eu(Ⅲ) on manganese dioxide studied by batch and high resolution EXAFS technique[J].Radiochim Acta,2014,102:155-167.
    [15] Sun Y,Zhang R,Ding C,et al.Adsorption of U(Ⅵ) on sericite in the presence of Bacillus subtilis:a combined batch,EXAFS and modeling techniques[J].Geochim Cosmochim Acta,2016,180:51-65.
    [16] Yang S,Sheng G,Montavon G,et al.Investigation of Eu(Ⅲ) immobilization on γ-Al2O3 surfaces by combining batch technique and EXAFS analyses:role of contact time and humic acid[J].Geochim Cosmochim Acta,2013,121:84-104.
    [17] Tan X,Hu J,Montavon G,et al.Sorption speciation of nickel(Ⅱ) onto Ca-montmorillonite:batch,EXAFS techniques and modeling[J].Dalton Trans,2011,40:10953-10960.
    [18] Tan X L,Fan Q H,Wang X K,et al.Eu(Ⅲ) sorption to TiO2 (anatase and rutile):batch,XPS,and EXAFS study[J].Environ Sci Technol,2009,43:3115-3121.
    [19] Ren X,Tan X,Hayat T,et al.Co-sequestration of Zn(Ⅱ) and phosphate by γ-Al2O3:from macroscopic to microscopic investigation[J].J Hazard Mater,2015,297:134-145.
    [20] Mei H,Tan X,Yu S,et al.Effect of silicate on U(Ⅵ) sorption to γ-Al2O3:batch and EXAFS studies[J].Chem Eng J,2015,269:371-378.
    [21] 丁菲菲,丁名成,魏强,等.L-丝氨酸水杨醛希夫碱镍(Ⅱ)配合物的合成、结构及与DNA的相互作用[J].聊城大学学报(自然科学版),2016,29(1):37-42.
    [22] 李国豪,张静静,王莉,等.一个钕(Ⅲ)的二维层状配位聚合物的合成、结构及近红外发光性能研究[J].聊城大学学报(自然科学版),2015,28(1):40-44.
    [23] 章毛连,王祥科,陈磊.pH对Eu(Ⅲ)在氧化铝上吸附行为的影响[J].武汉大学学报(理学版),2005,51:691-694.
    [24] Tan X L,Wang X K,Geckeis H,et al.Sorption of Eu(Ⅲ) on humic acid or fulvic acid bound to hydrous alumina studied by SEM-EDS,XPS,TRLFS,and batch techniques[J].Environ Sci Technol,2008,42:6532-6537.
    [25] Wang X,Chen Z,Tan X,et al.Effect of pH,humic acid and addition sequences on Eu(Ⅲ) sorption onto γ-Al2O3 study by batch and time resolved laser fluorescence spectroscopy[J].Chem Eng J,2016,287:313-320.
    [26] Yan M,Fu Q,Li D,et al.Study of the pH influence on the optical properties of dissolved organic matter using fluorescence excitation-emission matrix and parallel factor analysis[J].J Lumin,2013,142:103-109.
    [27] Tan L,Wang X,Tan X,et al.Bonding properties of humic acid with attapulgite and its influence on U(Ⅵ) sorption[J].Chem Geol,2017,464:91-100.
    [28] Tan L,Tan X,Mei H,et al.Coagulation behavior of humic acid in aqueous solutions containing Cs+,Sr2+ and Eu3+:DLS,EEM and MD simulations[J].Environ Pollut,2018,123:835-843.
    [29] 熊忠华,陈琦,郑秀梅,等.UO■·nH2O和PuO■·nH2O(n=2,4,5,6)密度泛函理论研究[J].化学学报,2005,7:572-576.
    [30] Tan X,Ren X,Li J,et al.Theoretical investigation of uranyl ion adsorption on hydroxylated γ-Al2O3 surfaces[J].RSC Adv,2013,3:19551-19559.
    [31] Pan Q J,Odoh S O,Asaduzzaman A M,et al.Adsorption of uranyl species onto the rutile (110) surface:a periodic DFT study[J].Chem Eur J,2012,18:1458-1466.
    [32] Ren X,Yang S,Tan X,et al.Investigation of radionuclide Co-60(Ⅱ) binding to TiO2 by batch technique,surface complexation model and DFT calculations[J].Sci China Chem,2012,55(9):1752-1759.
    [33] Gao Y,Chen K,Tan X,et al.Interaction mechanism of Re(Ⅶ) with zirconium dioxide nanoparticles archored onto reduced graphene oxides[J].ACS Sustain Chem Eng,2017,5:2163-2171.
    [34] Ai Y,Liu Y,Lan W,et al.The effect of pH on the U(Ⅵ) sorption on graphene oxide (GO):a theoretical study[J].Chem Eng J,2018,343:460-466.
    [35] 辜家芳,陆春海,陈文凯,等.水溶液中碳酸铀酰化合物的电子结构[J].物理化学学报,2012,28:792-798.
    [36] 刘晓宇,黎春,田文宇,等.铀酰离子吸附在高岭土基面的分子动力学模拟[J].物理化学学报,2011,27:59-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700