干旱区绿洲土壤对磺胺甲恶唑的吸附特性及影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Adsorption characteristics and influencing factors of sulfamethoxazole in arid oasis soil
  • 作者:谢超然 ; 秦婷婷 ; 王兆炜 ; 朱俊民 ; 李艳 ; 谢晓芸
  • 英文作者:Xie Chao-ran;Qin Ting-ting;Wang Zhao-wei;Zhu Jun-min;Li Yan;Xie Xiao-yun;Key Laboratory for Environment Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University;
  • 关键词:磺胺甲恶唑 ; 吸附 ; 绿洲土壤 ; 干旱区
  • 英文关键词:sulfamethoxazole;;adsorption;;oasis soil;;arid area
  • 中文刊名:LDZK
  • 英文刊名:Journal of Lanzhou University(Natural Sciences)
  • 机构:兰州大学资源环境学院甘肃省环境污染预警与控制重点实验室;
  • 出版日期:2018-10-15
  • 出版单位:兰州大学学报(自然科学版)
  • 年:2018
  • 期:v.54;No.239
  • 基金:甘肃省自然科学基金项目(17JR5RA218);; 中央高校基本科研业务费专项资金项目(lzujbky-2016-162)
  • 语种:中文;
  • 页:LDZK201805008
  • 页数:7
  • CN:05
  • ISSN:62-1075/N
  • 分类号:62-68
摘要
采用批量吸附法研究了磺胺甲恶唑在干旱区绿洲土壤上的吸附动力学、热力学及pH、腐殖酸浓度、Na~+强度、Cu~(2+)质量浓度等因素对吸附的影响.结果表明:磺胺甲恶唑在绿洲土壤上的吸附动力学符合准二级动力学模型;初始质量浓度为10、20 mg/L时,磺胺甲恶唑在干旱区绿洲土壤中的最大吸附量分别为9.810×10~(-5)、1.992×10~(-4). Freundlich方程能较好地拟合吸附等温数据,吸附反应为放热反应,吸附过程主要为物理反应.pH、Na~+强度及共存Cu~(2+)影响吸附过程.当溶液初始pH大于磺胺甲恶唑电离平衡常数的负对数为5.7时,土壤对磺胺甲恶唑的吸附量由2.336×10~(-4)下降至1.905×10~(-4);腐殖酸浓度的增加不利于土壤对磺胺甲恶唑的吸附;磺胺甲恶唑在土壤中的吸附量随着溶液中Na~+质量浓度的增加而降低,随Cu~(2+)质量浓度的增高而增大.
        The adsorption kinetics, thermodynamics and the effects of pH, humic acid concentration, Na~+concentration and Cu~(2+) concentration on the adsorption of sulfamethoxazole in arid oasis soil were investigated by the batch adsorption method. The results suggested that the adsorption kinetics of sulfamethoxazole in arid oasis soil fitted the pseudo-second-order kinetics model. When the initial concentration was 10 and 20 mg/L, the maximum adsorption amount of sulfamethoxazole was 9.810×10~(-5), 1.992×10~(-4) respectively. The Freundlich equation could fit better the adsorption isotherm data, the adsorption reaction was an exothermic reaction and the adsorption process was mainly physical adsorption. The pH,Na~+ strength and coexisting Cu~(2+) affected the adsorption process. When the initial pH of solution was higher than pK_a 5.7 of sulfamethoxazole, the adsorption amount of sulfamethoxazole in soil decreased from 2.336×10~(-4) to 1.905×10~(-4). The increase of humic acid concentration was not conducive to the adsorption of sulfamethoxazole in soil.The adsorption capacity of sulfamethoxazole in soil decreased with the increase of the concentration of Na~+ in the solution,but increased with the increase of the concentration of Cu~(2+).
引文
[1]张亚雷,周雪飞.药物和个人护理品的环境污染与控制[M].北京:科学出版社,2012.
    [2]高俊红,谢晓芸,张涵瑜,等.三种氟喹诺酮类抗生素在黄河沉积物中的吸附行为[J].兰州大学学报:自然科学版,2016, 52(5):593-598.
    [3]彭凤姣,应光国,周丽君,等.氧四环素在典型土壤中的吸附、解吸行为及其吸附态生物有效性研究[J].地球化学,2015,44(1):71-78.
    [4]王亮.常见兽用抗生素在中国典型土壤中的吸附特征研究[C/OL]. 2017-08-23.第五届全国环境化学大会会议,2008. http://www.docin.com/p-1630298530.html.
    [5]郭欣妍,王娜,许静,等.5种磺胺类抗生素在土壤中的吸附和淋溶特性[J].环境科学学报,2013, 33(11):3083-3091.
    [6] Srinivasan P, Sarmah A K. Assessing the sorption and leaching behavior of three sulfonamides in pasture soils through batch and column studies[J]. Science of the Total Environment, 2014,493(5):535-543.
    [7] Luo Y, Xu L, Rysz M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China[J]. Environmental Science and Technology, 2011,45(5):1827-1833.
    [8]李彦文,莫测辉,赵娜,等.菜地土壤中磺胺类和四环素类抗生素污染特征研究[J].环境科学,2009, 30(6):1762-1766.
    [9]邰义萍,罗晓栋,莫测辉,等.广东省畜牧粪便中唆诺酮类和磺胺类抗生素的含量与分布特征研究[J].环境科学,2011,32(4):1188-1193.
    [10] Laak T L, Wouter A G, Tolls J. The effect of pH and ionic strength on the sorption of sulfachloropyridazine,tylosin, and oxytetracycline to soil[J]. Environmental Toxicology Chemistry, 2006, 25(4):904-911.
    [11] Zhao Yan-ping, Geng Jin-ju, Wang Xiao-rong, et al.Tetracycline adsorption on kaolinite:pH, metal cations and humic acid effects[J]. Ecotoxicology, 2011, 20(5):1141-1147.
    [12]李晓林,金诚,姚驯,等.外源Cu胁迫下熟污泥改性黄土对Cu的吸持能力研究[J].兰州大学学报:自然科学版,2016, 52(5):599-604.
    [13]南忠仁,刘晓文,赵转军,等.干旱区绿洲土壤作物系统重金属化学行为与生态风险评估研究[M].北京:中国环境科学出版社,2011.
    [14] Lian Fei, Sun Bin-bin, Song Zheng-guo, et al. Physicochemical properties of herb-residue biochar and its sorp-tion to ionizable antibiotic sulfamethoxazole[J]. Chemical Engineering Journal, 2014, 248:128-134.
    [15]高俊红.抗生素磺胺噻唑和恩诺沙星在水环境中的吸附和光解行为研究[D].兰州:兰州大学资源环境学院,2016.
    [16]伊丽丽,焦文涛,陈卫平.不同抗生素在剖面土壤中的吸附特征[J].环境化学,2013, 12(12):2357-2363.
    [17]曾庆玲,李咏梅,顾国维.缺氧活性污泥对17β-雌二醇的吸附与降解研究[J].环境科学,2008, 29(9):2553-2557.
    [18]崔皓,王淑平.环丙沙星在潮土中的吸附特性[J].环境科学,2012,33(8):2895-2900.
    [19]田世烜,张萌,陈亮,等.3种污泥对磺胺二甲基嘧啶的吸附性能[J].环境工程学报,2012,6(3):1020-1024.
    [20]近藤精一,石川达雄,安部郁夫.吸附科学[M].北京:化学工业出版社,2006:35-40.
    [21]杨煜东,陈东辉,陈亮,等.厌氧、缺氧与好氧污泥对土霉素的吸附研究[J].水处理技术,2010, 36(5):66-69.
    [22] Loong C K, Ozawa M. The role of rare earth dopants in nanophase zirconia catalysts for automotive emission control[J]. Journal of Alloys and Compounds, 1999,303/304:60-65.
    [23]郭丽,王淑平,周志强,等.环丙沙星在深浅两层潮土层中吸附-解吸特性研究[J].农业环境科学学报,2014, 33(12):2359-2367.
    [24] Carter M C, Kilduff J E, Weber J W J. Site energy distribution analysis of preloaded adsorbents[J]. Environmental Science and Technology, 1995, 29:1773-1780.
    [25]吴苗苗.再生水回灌过程中典型磺胺类抗生素的行为特性研究[D].北京:清华大学环境学院,2015.
    [26]国家环境保护总局.化学农药环境安全评价试验准则[S].北京:国家环境保护总局,2003.
    [27] Zhang Di, Pan Bo, Wu Min, et al. Adsorption of sulfamethoxazole on functionalized carbon nanotubes as affected by cations and anions[J]. Environmental Pollution, 2011,159(10):2616-2621.
    [28] Lertpaitoonpan W, Ong S K, Moorman T B. Effect of organic carbon and pH on soil sorption of sulfamethazine[J]. Chemosphere, 2009, 76(4):558-564.
    [29] Boxall A, Blackwell P, Cavallo R, et al. The sorption and transport of a sulphonamide antibiotic in soil systems[J]. Toxicology Letters, 2002, 131(1/2):19-28.
    [30]杨灿.2种磺胺类抗生素在草甸黑土中的吸附、解吸及淋溶特性研究[D].长春:吉林农业大学资源与环境学院,2015.
    [31] Zhao Heng, Liu Xue, Cao Zhen, et al. Adsorption behavior and mechanism of chloramphenicols, sulfon-amides, and non-antibiotic pharmaceuticals on multiwalled carbon nanotubes[J]. Journal of Hazardous Materials, 2016,310:235-245.
    [32] Gao Juan, Pedersen J A. Adsorption of sulfonamide antimicrobial agents to clay minerals[J]. Environmental Science and Technology, 2006, 39(24):9509-9516.
    [33] Hou Juan, Pan Bo, Niu Xue-kui, et al. Sulfamethoxazole sorption by sediment fractions in comparison to pyrene and bisphenol A[J]. Environmental Pollution,2010,158(9):2826-2832.
    [34] Kang Seng-hun, Xing Bao-shan. Phenanthrene sorption to sequentially extracted soil humic acids and humins[J].Environmental Science and Technology, 2005, 39(1):134-140.
    [35]吴应琴,蒋煜峰,马明广,等.不溶性腐殖酸对水中硝基苯胺吸附行为的研究[J].西北师范大学学报:自然科学版,2006, 42(3):62-65.
    [36] Pils J R V, Laird D A. Sorption of tetracycline and chlortetracycline on K and Ca saturated soil clay, humic Substance, and clay humic complexes[J]. Environmental Science and Technology, 2007,41(6):1928-1933.
    [37]王东升,张婷,晁宇.离子强度和离子类型对土霉素在草甸土中被吸附的影响[J].生态环境学报,2014(5):870-875.
    [38]潘奕欣,马宁宁,赵婧.4种病原菌体外培养对抗菌药物持留形成特征[J].兰州大学学报:医学版,2017, 43(4):6-10.
    [39] Zhao Yan-ping, Geng Jin-ju, Wang Xiao-rong, et al.Adsorption of tetracycline onto goethite in the presence of metal cations and humic substances[J]. Journal of Colloid and Interface Science, 2011, 361(1):247-251.
    [40] Morel M C, Spadini L, Brimo K, et al. Speciation study in the sulfamethoxazole-copper-pH-soil system:implications for retention prediction[J]. Science of the Total Environment, 2014, 481(76):266-273.
    [41] Wu Di, Pan Bo, Wu Min, et al. Coadsorption of Cu and sulfamethoxazole on hydroxylized and graphitized carbon nanotubes[J]. Science of the Total Environment,2012, 479(12):247-252.
    [42] Kesimli B, Topacli A. Infrared studies on Co and Cd complexes of sulfamethoxazole[J]. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 2001,57(5):1031-1036.
    [43] Quispe D, Pérez L R, Silva L F, et al. Changes in mobility of hazardous elements during coal combustion in Santa Catarina power plant(Brazil)[J]. Fuel, 2012, 94(1):495-503.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700