基于等效龄期的钢管拱内混凝土硬化过程热应力
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermal Stress of Concrete-filled Steel Tube Arch During Hardening Process Based on Equivalent Age Method
  • 作者:孙建渊 ; 谢津宝
  • 英文作者:SUN Jianyuan;XIE Jinbao;College of Civil Engineering, Tongji University;
  • 关键词:钢管混凝土拱桥 ; 硬化过程 ; 水化热 ; 温度依赖性 ; 等效龄期法 ; 热力作用
  • 英文关键词:concrete-filled steel tube arch bridge;;hardening process;;hydration heat;;temperature dependence;;equivalent age method;;thermodynamic effect
  • 中文刊名:TJDZ
  • 英文刊名:Journal of Tongji University(Natural Science)
  • 机构:同济大学土木工程学院;
  • 出版日期:2019-06-15
  • 出版单位:同济大学学报(自然科学版)
  • 年:2019
  • 期:v.47
  • 基金:国家自然科学基金(51778468)
  • 语种:中文;
  • 页:TJDZ201906003
  • 页数:9
  • CN:06
  • ISSN:31-1267/N
  • 分类号:21-29
摘要
为揭示大直径钢管拱内混凝土硬化过程中力学性能增长的温度依赖性因素对组合结构热力作用效应的影响机理,采用有限元程序模拟钢管拱内混凝土的水化热传导过程,并与实测温度场数据进行对比,随后基于等效龄期法考虑其对管内混凝土弹性模量增长的影响,在此基础上结合热弹性力学理论得到了硬化过程中组合结构热应力的变化规律,并与未考虑温度依赖性影响的计算结果进行比较分析.结果表明,水化热温度场加快了管内混凝土硬化过程中弹性模量的增长速度,进而导致混凝土温度应力明显增大,截面径向、环向以及纵向温度应力增幅分别可达1.3倍、1.3倍和1.4倍,但对钢管应力的影响可忽略不计.因此,在分析大直径钢管拱内混凝土硬化过程中的热力作用效应时,必须考虑水化热温度场对管内混凝土弹性模量增长的影响.
        In order to reveal the influence mechanism of temperature dependence of development of mechanical properties of concrete in large-diameter steel tube arches on the thermodynamic effect of composite structures during hardening process, a finite element model was established to simulate the hydration heat transfer process of the concrete in the steel tube arch, which was compared with the measured temperature field data. Subsequently, the effect of hydration heat on the development of the modulus of elasticity of the concrete was further considered based on the equivalent age method, by which the variation of thermal stress of composite structure during hardening process were revealed combining with thermal elasticity mechanics theory, and compared with the calculation results without considering the influence of the temperature dependence. The results show that the hydration heat temperature field accelerates the growth rate of the modulus of elasticity of the concrete in the tube during hardening, which leads to a significant increase in the thermal stress of the concrete during hardening process, and the increases in the radial, circumferential and longitudinal directions can reach 1.3 times, 1.4 times and 1.3 times, respectively, but the effect on the stress of the steel tube is negligible. Hence, in the analysis of the thermodynamic effect during the hardening of concrete in large-diameter steel tube arches, the effect of hydration heat temperature field on the development of the modulus of elasticity of the concrete in the steel tube must be considered.
引文
[1] 陈宝春,韦建刚,周俊,等.我国钢管混凝土拱桥应用现状与展望[J].土木工程学报,2017,50(6):50.CHEN Baochun,WEI Jiangang,ZHOU Jun,et al.Application status and prospect of CFST arch bridge in China [J].Civil Engineering Journal,2017,50(6):50.
    [2] ZHENG J L,WANG J J.Concrete-filled steel tube arch bridges in China[J].Engineering,2018,4(1):143.
    [3] 高卫卫.大跨度钢管混凝土拱桥水化热的试验与数值分析[J].铁道建筑,2016(8):35.GAO Weiwei.Experimental and numerical analysis on hydration heat of long-span concrete-filled steel tube arch bridge[J].Railway Construction,2016(8):35.
    [4] 中华人民共和国住房和城乡建设部.大体积混凝土施工规范:GB 50496—2009 [S].北京:中国计划出版社,2009.Ministry of Housing and Urban-Rural Development of the People's Republic of China.Mass concrete construction specification:GB 50496—2009[S].Beijing:China Planning Press,2009.
    [5] 陈宝春.钢管混凝土拱桥设计与施工[M].北京:人民交通出版社,1999.CHEN Baochun.Design and construction of concrete-filled steel tube arch bridge[M].Beijing:China Communications Press,1999.
    [6] 韩林海,杨有福,李永进,等.钢管高性能混凝土的水化热和收缩性能研究[J].土木工程学报,2006,39(3):1.HAN Linhai,YANG Youfu,LI Yongjin,et al.Hydration heat and shrinkage properties of high performance concrete-filled steel tube[J].China Civil Engineering Journal,2006,39(3):1.
    [7] 冯斌.钢管混凝土中核心混凝土的水化热、收缩与徐变计算模型研究[D].福州:福州大学,2004.FENG Bin.Research on the calculation models of hydration heat,shinkage and creep of core concrete in the steel tube[D].Fuzhou:Fuzhou University,2004.
    [8] 刘振宇.钢管混凝土拱肋截面温度场研究[D].福州:福州大学,2006.LIU Zhenyu.Research on the temperature field of CFST arch rib section[D].Fuzhou:Fuzhou University,2006.
    [9] 林春姣,郑皆连,黄海东.钢管混凝土拱计算合龙温度试验研究[J].广西大学学报(自然科学版),2010,35(4):601.LIN Chunjiao,ZHENG Jielian,HUANG Haidong.Experimental study on the calculated closure temperature of concrete-filled steel tube arch[J].Journal of Guangxi University(Natural Science Edition),2010,35(4):601.
    [10] 张治成.钢管混凝土拱桥混凝土灌注阶段的受力仿真分析[J].工程力学,2007,24(2):146.ZHANG Zhicheng.Force analysis of CFST arch bridge during concrete casting[J].Engineering Mechanics,2007,24(2):146.
    [11] 孙国富.大跨度钢管混凝土拱桥日照温度效应理论及应用研究[D].济南:山东大学,2010.SUN Guofu.Theory and application of solar radiation effect of long-span CFST arch bridge[D].Jinan:Shandong University,2010.
    [12] 刘恒.施工阶段钢管拱非线性温度影响研究[D].西安:长安大学,2012.LIU Heng.Research on the effect of nonlinear temperature of steel tube arch during construction period[D].Xi’an:Chang’an University,2012.
    [13] 宣纪明,向华伟,芦可琪.钢管混凝土拱桥拱肋水化热温度场和温度应力分析[J].桥梁建设,2010(3):29.XUAN Jiming,XIANG Huawei,LU Keqi.Analysis on hydration heat temperature field and temperature stress of CFST arch bridge[J].Bridge Construction,2010(3):29.
    [14] 王江龙.哑铃型钢管混凝土拱桥温度场及温度效应研究[D].西安:长安大学,2015.WANG Jianglong.Research on the temperature field and thermal effects of dumbbell-shape CFST arch bridge[D].Xi’an:Chang’an University,2015.
    [15] YANG B,HUANG J H,LIN C J,et al.Experimental study on temperature fields of dumbbell-shape section of CFST arch rib and its effects[J].Advanced Materials Research,2011,163-167:2564.
    [16] 王友彪.大跨度钢管混凝土温度场及温度效应分析[D].成都:西南交通大学,2013.WANG Youbiao.Research on the temperature field and thermal effects of long-span CFST arch bridge[D].Chengdu:Southwest Jiaotong University,2013.
    [17] 荆旭.钢管混凝土拱管内混凝土水化热及灌注方案研究[D].重庆:重庆交通大学,2012.JING Xu.Research on the hydration heat and casting scheme of CFST arch[D].Chongqing:Chongqing Jiaotong University,2012.
    [18] 朱伯芳.大体积混凝土温度应力与温度控制[M].第2版.北京:中国水利水电出版社,2012.ZHU Bofang.Thermal stresss and temperature control in mass concrete[M].2nd ed.Beijing:China Water & Power Press,2012.
    [19] 张庆欢.粉煤灰在复合胶凝材料水化过程中的作用机理[D].北京:清华大学,2006.ZHANG Qinghuan.Mechanism of action of fly ash in hydration process of composite cementitious materials[D].Beijing:Tsinghua University,2006.
    [20] 孔祥谦.有限单元法在传热学中的应用[M].第3版.北京:科学出版社,1998.KONG Xiangqian.Application of finite element method in heat transfer [M].3rd ed.Beijing:Science Press,1998.
    [21] 王勖成.有限单元法[M].北京:清华大学出版社,2003.WANG Xucheng.Finite element method [M].Beijing:Tsinghua University Press,2003.
    [22] 张增起,石梦晓,王强,等.等效龄期法在大体积混凝土性能预测中的准确性[J].清华大学学报(自然科学版),2016,56(8):806.ZHANG Zengqi,SHI Mengxiao,WANG Qiang,et al.The accuracy of equivalent age method in predicting the performance of mass concrete[J].Journal of Tsinghua University(Natural Science Edition),2016,56(8):806.
    [23] NURSE R W.Steam curing of concrete[J].Magazine of Concrete Research,1949,1(2):79.
    [24] SAUL A G A.Principles underlying the steam curing of concrete at atmospheric pressure[J].Magazine of Concrete Research,1951,2(6):127.
    [25] 高原,张君,罗孙一鸣.基于水泥水化度的混凝土早期力学性能发展预测[J].工程力学,2013,30(10):133.GAO Yuan,ZHANG Jun,LUO Sunyiming.Prediction of development of early mechanical properties of concrete based on cement hydration[J].Engineering Mechanics,2013,30(10):133.
    [26] HANSEN P F,PEDERSEN E J.Maturity computer for controlled curing and hardening of concrete[J].Nordisk Betong,1977,41 (19):21.
    [27] 马跃峰.基于水化度的混凝土温度与应力研究[D].南京:河海大学,2006.MA Yuefeng.Research on temperature and stress of concrete based on hydration degree[D].Nanjing:Hohai University,2006.
    [28] Neville A M.Properties of concrete[M].New York:John Wiley & Sons Inc,1996.
    [29] LI Fangyuan,SHEN Yin.Full-scale test of the hydration heat and the curing method of the wet joints of a precast segmental pier of a bridge[J].Revue Francaise de Génie Civil,2017,21(3):1.
    [30] 王甲春,阎培渝.基于等效龄期的粉煤灰混凝土抗压强度计算模型[J].中山大学学报(自然科学版),2014,53(4):83.WANG Jiachun,YAN Peiyu.Computational model of compressive strength of fly ash concrete based on equivalent age[J].Journal of Sun Yat-sen University(Natural Science Edition),2014,53(4):83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700