新型轻质陶粒生物滤池在启动阶段对模拟尾水的处理效能及微生物群落特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of Microbial Community and Treatment Efficiency for Simulated Wastewater during Startup Phase of New Lightweight Ceramsite Biofilter
  • 作者:操家顺 ; 费罗兰 ; 罗景阳 ; 商凯航 ; 姚博宇 ; 姚永连
  • 英文作者:CAO Jiashun;FEI Luolan;LUO Jingyang;SHANG Kaihang;YAO Boyu;YAO Yonglian;Key Laboratory of Integrated Regulation and Resource Development Shallow Lakes,Ministry of Education,Hohai University;College of Environmental Science and Engineering,Hohai University;China Energy Construction Group Zhejiang Electric Power Design Institute Co.,Ltd.;
  • 关键词:新型轻质陶粒生物滤池 ; 多孔轻质负荷陶粒 ; 水处理效果 ; 微生物群落
  • 英文关键词:new lightweight ceramsite biofilter;;lightweight porous composite ceramsit(LPCC);;water treatment effect;;microbial community
  • 中文刊名:ZSJS
  • 英文刊名:Water Purification Technology
  • 机构:河海大学浅水湖泊综合治理与资源开发教育部重点实验室;河海大学环境学院;中国能源建设集团浙江省电力设计院有限公司;
  • 出版日期:2019-01-24 11:54
  • 出版单位:净水技术
  • 年:2019
  • 期:v.38;No.201
  • 语种:中文;
  • 页:ZSJS201901016
  • 页数:9
  • CN:01
  • ISSN:31-1513/TQ
  • 分类号:82-90
摘要
以模拟城镇污水厂尾水作为试验用水,对比研究了采用自制的多孔轻质负荷陶粒滤料的生物滤池即新型轻质陶粒生物滤池与普通生物陶粒滤池在系统挂膜启动阶段的生物膜的形成情况及水处理效果,并通过高通量测序探究了该新型生物滤池挂膜启动阶段生物膜微生物群落结构的变化规律。试验结果表明:对比普通生物陶粒滤池(对照组),新型轻质陶粒生物滤池(试验组)能减轻约68.4%的滤层总重量;挂膜启动阶段两组COD_(Cr)和总氮的进水浓度均维持在75 mg/L和15~16 mg/L,试验组出水COD_(Cr)和总氮的平均去除率分别达76.5%和51%,均优于对照组5%左右,且试验组挂膜初期处理优势明显,挂膜启动第1 d时试验组尾水中COD_(Cr)、总氮的去除率分别为61.35%、35.1%,分别超出对照组22.96%、10.1%左右;试验组陶粒的附着生物量始终高于对照组陶粒约20%;微生物群落结构分析结果表明,多孔轻质负荷陶粒滤料生物膜群落结构以变形菌门和拟杆菌门为优势菌门,以黄杆菌纲、β-变形菌纲为优势菌群,挂膜约7 d后微生物群落组成开始趋于稳定,但仍存在缓慢变化,20~27 d生物种群相似度极高,以土壤杆菌属(Agrobacterium)、热单胞菌属(Thermomonas)、土地杆菌属(Pedobacter)、嗜氢菌属(Hydrogenophaga)等为主。文中结果可为城镇污水厂尾水处理出水水质的稳定达标及进一步的提标提供技术参考。
        Taking simulated tail water of urban sewage treatment plant as test water, biofilm formation and water treatment of common bioceramic filter and new lightweight ceramic biofilter using lightweight porous composite ceramsite at the startup phase of the system were compared. The high-throughput sequencing were used to investigate the changes of biofilm microbial community structure during the startup phase of the biofilter. The test results showed that compared with common bioceramic filter( control group), new lightweight ceramsite biofilter(test group) could reduce total weight of the filter layer by about 68. 4%; COD_(Cr) and TN in the startup phase of the membrane. The influent concentration was maintained at 75 mg/L and 15 ~16 mg/L. The average removal rates of COD_(Cr) and total nitrogen(TP) in the effluent of the experimental group were 76. 5% and 51%, respectively, which were better than 5% of the control group, and the initial treatment advantages of the test group were obvious. On the first day of membrane initiation, removal rates of COD_(Cr) and TN in the tail water of the test group were 61. 35% and 35. 1%, respectively, which were 22. 96% and 10. 1%;Attached biomass of the light filter material was always higher than the ordinary ceramsite by about 20%; According to the analysis of microbial community structure, biofilm community structure of light filter material was dominated by Proteobacteria and Bacteroidetes, and the dominant strains were Lactobacillus and β-Proteobacteria. The composition of microbial community began to stabilize after about 7 days,but there was still a slow change, dominated by Agrobacterium, baconas, Pedobacter and Hydrogenophaga. It provided a reference for the stable compliance of the tail water treatment effluent quality of urban sewage treatment plants and further standardization work.
引文
[1]中国环境报.水污染防治行动计划[J].中国环保产业,2015(5):4-12.
    [2]王强,吴悦颖,文宇立,等.中国污水处理设施建设现状与存在问题研究[J].环境污染与防治,2015, 37(3):94-97.
    [3]关伟,郭会平,赵学洋,等.我国城市污水处理现状及城市污水处理厂提标改造路径分析[J].辽宁大学学报(自然科学版),2015,42(4):378-384.
    [4] LINK R E, WOLFENDEN A, HODGE J Q. Dynamic shear modulus and damping in ironCopper and steel-based metal matrix composites[J]. Journal of Testing&Evaluation, 2000, 28(3):176-180.
    [5] RYU H D, KIM D, LIM H E, et al. Nitrogen removal from lowcarbon-to-nitrogen wastewater in four-stage biological aerated filter system[J]. Process Biochemistry, 2008, 43(7):729-735.
    [6] WU S, YUE Q, QI Y, et al. Preparation of ultra-lightweight sludge ceramics(ULSC)and application for pharmaceutical advanced wastewater treatment in a biological aerobic filter(BAF)[J]. Bioresource Technology, 2011, 102(3):2296-2300.
    [7]牛育辉.轻质填料曝气生物滤池的试验研究及工程应用[D].天津:天津大学,2007.
    [8] SCHONTAG J M, PIZZOLATTI B S, JANG ADA V H, et al. Water quality produced by polystyrene granules as a media filter on rapid filters[J]. Journal of Water Process Engineering, 2015, 5(5):118-126.
    [9] SOKOLOVIC R S, SOKOLOVIC S, GOVEDARICA D. Performance of expanded polystyrene particles in deep bed filtration[J].Separation&Purification Technology, 2009, 68(2):267-272.
    [10] MANN A, MENDOZA L, STEPHENSON T. A comparison of floating and sunken media biological aerated filters for nitrification[J]. Journal of Chemical Technology&Biotechnology, 2010, 72(3):273-279.
    [11] BAO T, CHEN T, LIU H, et al. Preparation of magnetic porous ceramsite and its application in biological aerated filters[J]. Journal of Water Process Engineering, 2014, 4(10):185-195.
    [12] ZOU J L, XU G R, LI G B. Ceramsite obtained from water and wastewater sludge and its characteristics affected by Fe_2O_3, CaO,and MgO[J]. Journal of Hazardous Materials, 2009, 165(1-3):995-1001.
    [13] XU G R, ZOU J L, LI G B. Ceramsite obtained from water and wastewater sludge and its characteristics affected by(Fe(2)O(3)+CaO+MgO)/(Si0(2)+Al(2)O(3))[J]. Water Research, 2009, 43(11):2885-2893.
    [14] LIU M, XU G, LI G. Effect of the ratio of components on the characteristics of lightweight aggregate made from sewage sludge and river sediment[J]. Process Safety&Environmental Protection,2017, 105(1):109-116.
    [15] ZHAI M, XU Y, GUO L, et al. Characteristics of pore structure of rice husk char during high-temperature steam gasification[J]. Fuel, 2016, 69(12):622-629.
    [16] CHEN D, GAO A, MA Z, et al. In-depth study of rice husk torrefaction:Characterization of solid, liquid and gaseous products, oxygen migration and energy yield[J]. Bioresource Technology,2018, 253(1):148-153.
    [17]鲍腾,彭书传,陈冬,等.凹凸棒石基碳复合陶粒的制备和特性研究[J].功能材料,2012,43(14):1889-1893.
    [18] SILVA J C P D, TONETTI A L, LEONEL L P, et al. Denitrification on upflow-anaerobic filter filled with coconut shells(Cocos nucifera)[J]. Ecological Engineering, 2015, 82(9):474-479.
    [19] ALEXANDRA I I, VIOREL P, VALERIU B, et al. Determining the optimal operational parameters for denitrification in a biological filter[J]. Journal of Biotechnology, 2017, 34(15):S22.
    [20] KIM S, BAE W, KIM M, et al. Evaluation of denitrification-nitrification biofilter systems in treating wastewater with low carbon:Nitrogen ratios[J]. Environmental Technology, 2015,36(8):1035-1043.
    [21]黄兴. MBR中EPS、SMP和生物多样性的研究[D].天津:天津大学,2008.
    [22]安莹,王志伟,李彬,等.盐度冲击下MBR污泥SMP和EPS的三维荧光光谱解析[J].中国环境科学,2014, 34(7):1754-1762.
    [23]李慧,田禹,苏欣颖,等. MFC-MBR耦合系统中SMP与EPS特性的研究[J].中国环境科学,2013, 33(1):49-55.
    [24]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M]. 4版.中国环境科学出版社,2002.
    [25]吕波,蒲贵兵.城市生活垃圾厌氧消化中氮的转化行为研究[J].化学与生物工程,2010, 27(9):77-81.
    [26]张运真,青春耀,刘亚纳,等.改变厌氧发酵工艺条件对发酵液氮含量的影响[J].可再生能源,2004(5):44-45.
    [27]王峰,徐灿华,刘易,等.启动条件对活性污泥变形菌群落的影响[J].同济大学学报(自然科学版),2007, 35(7):949-953.
    [28]黎乾,吴松维,吴伟祥,等.回灌渗滤液C/N对填埋垃圾生物反应器反硝化特性的影响[J].环境科学,2011,32(11):3386-3393.
    [29]王红旗,姚治华,刘敬奇,等.苯在一株黄杆菌细胞内外的分布与降解率的关系[J].中国环境科学,2006, 26(5):583-586.
    [30]李小义,王丽萍,杜雅萍,等.好氧反硝化微生物多样性及其反硝化功能初步研究[J].氨基酸和生物资源,2016, 38(2):37-45.
    [31]骆坚平,刘玉娟,潘涛,等.北京典型景观水体好氧反硝化菌组成特征[J].微生物学杂志,2015, 35(6):21-26.
    [32]唐若凯,肖作义,杨文焕,等.多级SMBBR工艺处理低C/N比城市污水中试研究[J].应用化工,2017, 46(9):1728-1732.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700